
Chapter 10

Post-main sequence evolution through
helium burning

After the main-sequence phase, stars are left with a hydrogen-exhausted core surrounded by a still
hydrogen-rich envelope. To describe the evolution after the main sequence, it is useful to make a
division based on the mass:

low-mass stars are those that develop a degenerate helium core after the main sequence, leading to
a relatively long-lived red giant branch phase. The ignition of He is unstable and occurs in a
so-called helium flash. This occurs for masses between 0.8 M⊙ and ≈ 2 M⊙ (this upper limit is
sometimes denoted as MHeF).

intermediate-mass stars develop a helium core that remains non-degenerate, and they ignite helium
in a stable manner. After the central He burning phase they form a carbon-oxygen core that
becomes degenerate. Intermediate-mass stars have masses between MHeF and Mup ≈ 8 M⊙.
Both low-mass and intermediate-mass stars shed their envelopes by a strong stellar wind at the
end of their evolution and their remnants are CO white dwarfs.

massive stars have masses larger than Mup ≈ 8 M⊙ and ignite carbon in a non-degenerate core.
Except for a small mass range (≈ 8−11 M⊙) these stars also ignite heavier elements in the core
until an Fe core is formed which collapses.

In this chapter the evolution between the end of the main sequence and the development of a carbon-
oxygen core is discussed. We concentrate on low-mass and intermediate-mass stars, but the principles
are equally valid for massive stars. The evolution of massive stars in the H-R diagram is, however,
also strongly affected by mass loss and we defer a more detailed discussion of massive stars until
Chapter 12.

10.1 The Schönberg-Chandrasekhar limit

During central hydrogen burning on the main sequence, we have seen that stars are in thermal equi-
librium (τnuc ≫ τKH) with the surface luminosity balanced by the nuclear power generated in the
centre. After the main sequence a hydrogen-exhausted core is formed inside which nuclear energy
production has ceased. This inert helium core is surrounded by a hydrogen-burning shell and a H-
rich envelope. For such an inert core to be in thermal equilibrium requires a zero net energy flow,
l(m) =

∫

m ϵnuc dm = 0 and hence dT/dr ∝ l = 0. This implies that the core must be isothermal to
remain in TE. Such a stable situation is possible only under certain circumstances.
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A star composed of ideal gas at constant temperature corresponds to a polytrope with γ = 1, i.e.
with n→ ∞. Such a polytrope would have infinite radius (Chapter 4) or, if its radius were finite, would
have infinitely high central density, both of which are unphysical. In other words, completely isother-
mal stars made of ideal gas cannot exist. The reason is that the pressure gradient needed to support
such a star against its own gravity is produced only by the density gradient, dP/dr = (RT/µ) dρ/dr,
with no help from a temperature gradient. Thus hydrostatic equilibrium in an isothermal star would
require a very large density gradient.

It turns out, however, that if only the core of the star is isothermal, and the mass Mc of this isother-
mal core is only a small fraction of the total mass of the star, then a stable configuration is possible. If
the core mass exceeds this limit, then the pressure within the isothermal core cannot sustain the weight
of the overlying envelope. This was first discovered by Schönberg and Chandrasekhar in 1942, who
computed the maximum core mass fraction qc = Mc/M to be

Mc

M
< qSC = 0.37

(

µenv

µc

)2

≈ 0.10 (10.1)

where µc and µenv are the mean molecular weight in the core and in the envelope respectively. This
limit is known as the Schönberg-Chandrasekhar limit. The typical value qSC ≈ 0.10 is appropriate
for a helium core with µc = 1.3 and a H-rich envelope. (A simple, qualitative derivation of eq. 10.1
can be found in Maeder Section 25.5.1.)
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Figure 10.1. Evolution tracks for stars of quasi-solar composition (X = 0.7, Z = 0.02) and masses of 1, 2,
3, 5, 7 and 10 M⊙ in the H-R diagram (left panel) and in the central temperature versus density plane (right
panel). Dotted lines in both diagrams show the ZAMS, while the dashed lines in the right-hand diagram show
the borderlines between equation-of-state regions (as in Fig. 3.4). The 1 M⊙ model is characteristic of low-mass
stars: the central core becomes degenerate soon after leaving the main sequence and helium is ignited in an
unstable flash at the top of the red giant branch. When the degeneracy is eventually lifted, He burning becomes
stable and the star moves to the zero-age horizontal branch in the HRD, at log L ≈ 1.8. The 2 M⊙ model is
a borderline case that just undergoes a He flash. The He flash itself is not computed in these models, hence
a gap appears in the tracks. The 5 M⊙ model is representative of intermediate-mass stars, undergoing quiet
He ignition and He burning in a loop in the HRD. The appearance of the 7 and 10 M⊙ models in the HRD
is qualitatively similar. However, at the end of its evolution the 10 M⊙ star undergoes carbon burning in the
centre, while the cores of lower-mass stars become strongly degenerate. (Compare to Fig. 8.4.)
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Stars that leave the main sequence with a helium core mass below the Schönberg-Chandrasekhar
limit can therefore remain in complete equilibrium (HE and TE) during hydrogen-shell burning. This
is the case for stars with masses up to about 8 M⊙, if convective overshooting is neglected. Over-
shooting increases the core mass at the end of central H-burning, and therefore the upper mass limit
for stars remaining in TE after the main sequence decreases to about 2 M⊙ in calculations that include
moderate overshooting.

When the mass of the H-exhausted core exceeds the Schönberg-Chandrasekhar limit – either im-
mediately after the main sequence in relatively massive stars, or in lower-mass stars after a period
of H-shell burning during which the helium core mass increases steadily – thermal equilibrium is no
longer possible. The helium core then contracts and builds up a temperature gradient. This tempera-
ture gradient adds to the pressure gradient that is needed to balance gravity and keep the star in HE.
However, the temperature gradient also causes an outward heat flow from the core, such that it keeps
contracting and heating up in the process (by virtue of the virial theorem). This contraction occurs on
the thermal (Kelvin-Helmholtz) timescale in a quasi-static way, always maintaining a state very close
to HE.

Low-mass stars (M ∼< 2 M⊙) have another way of maintaining both HE and TE during hydrogen-
shell burning. In such stars the helium core is relatively dense and cool and electron degeneracy
can become important in the core after the main sequence. Degeneracy pressure is independent of
temperature and can support the weight of the envelope even in a relatively massive core, as long
as the degenerate core mass does not exceed the Chandrasekhar mass.1 In that case the Schönberg-
Chandrasekhar limit no longer applies. Inside such degenerate helium cores efficient energy transport
by electron conduction (Sec. 5.2.4) can keep the core almost isothermal.

Effects of core contraction: the ‘mirror principle’

The following principle appears to be generally valid, and provides a way of interpreting the results
of detailed numerical calculations:

Whenever a star has an active shell-burning source, the burning shell acts as a mirror between the
core and the envelope:

core contraction ⇒ envelope expansion
core expansion ⇒ envelope contraction

This ‘mirror principle’ can be understood by the following argument. To maintain thermal equi-
librium, the burning shell must remain at approximately constant temperature due to the thermostatic
action of nuclear burning. Contraction of the burning shell would entail heating, so the burning shell
must also remain at roughly constant radius. As the core contracts, ρshell must therefore decrease and
hence also the pressure in the burning shell must decrease. Therefore the pressure Penv of the overly-
ing envelope must decrease, so the layers above the shell must expand (an example of this behaviour
can be seen in Fig. 10.4, to be discussed in the next section).

10.2 The hydrogen-shell burning phase

In this section we discuss in some detail the evolution of stars during hydrogen-shell burning, until
the onset of helium burning. Based on the above section, qualitative differences are to be expected
between low-mass stars (M ∼< 2 M⊙) on the one hand and intermediate- and high-mass stars (M ∼>

1Note the very different physical meanings of the Chandrasekhar mass and the Schönberg-Chandrasekhar limit!
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Figure 10.2. Evolution track in the Hertzsprung-Russell diagram of a 5M⊙ star of initial composition X =
0.7, Z = 0.02. See text for details. The evolution track in the left panel was computed without convective
overshooting. The right panel shows a comparison between this track and the evolution of the same star
computed with moderate overshooting (αov = lov/HP ≈ 0.25; dashed line), illustrating some of the effects
discussed in Sec. 9.3.4.

2 M⊙) on the other hand. Therefore we discuss these two cases separately, starting with the evolution
of higher-mass stars because it is relatively simple compared to low-mass stars. We use two detailed
stellar evolution sequences, for stars of 5 M⊙ and 1 M⊙ respectively, as examples for the general
evolutionary behaviour of stars in these two mass ranges.

10.2.1 Hydrogen-shell burning in intermediate-mass and massive stars

Fig. 10.2 shows the evolution track of a 5 M⊙ star of quasi-solar composition (X = 0.7,Z = 0.02)
in the H-R diagram, and Fig. 10.3 shows some of the interior details of the evolution of this star as
a function of time from the end of central hydrogen burning. Point B in both figures corresponds
to the start of the overall contraction phase near the end of the main sequence (when the central H
mass fraction Xc ≈ 0.03) and point C corresponds to the exhaustion of hydrogen in the centre and the
disappearance of the convective core. The hatched regions in the ‘Kippenhahn diagram’ (lower panel
of Fig. 10.3) show the rapid transition at point C from hydrogen burning in the centre to hydrogen
burning in a shell.

The H-exhausted core initially has a mass of about 0.4 M⊙ which is below the Schönberg-Chandra-
sekhar limit, so the star initially remains in TE and the first portion of the hydrogen-shell burning
phase (C–D) is relatively slow, lasting about 2 × 106 yr. The temperature and density gradients be-
tween core and envelope are still shallow, so that the burning shell initially occupies a rather large
region in mass. This phase is therefore referred to as thick shell burning. The helium core gradually
grows in mass until it exceeds the S-C limit and the contraction of the core speeds up. The envelope
expands at the same time, exemplifying the ‘mirror principle’ discussed above. This becomes more
clear in Fig. 10.4 which shows the radial variations of several mass shells inside the star. After point
C the layers below the burning shell contract while the layers above expand, at an accelerating rate
towards the end of phase C–D. As a result the temperature and density gradients between core and
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Figure 10.3. Internal evolution of a 5 M⊙ star of
initial composition X = 0.7, Z = 0.02. The pan-
els show various internal quantities as a function
of time, from top to bottom:
(a) Contributions to the luminosity from hydro-
gen burning (red line), helium burning (blue)
and gravitational energy release (orange; dashed
parts show net absorption of gravitational en-
ergy). The black line is the surface luminosity.
(b) Central mass fractions of various elements
(1H, 4He, 12C, 14N and 16O) as indicated.
(c) Internal structure as a function of mass coor-
dinate m, known as a ‘Kippenhahn diagram’. A
vertical line through the graph corresponds to a
model at a particular time. Gray areas are con-
vective, lighter-gray areas are semi-convective.
The red hatched regions show areas of nuclear
energy generation, where ϵnuc > 10 L/M (dark
red) and ϵnuc > 2 L/M (light red). The letters
B. . . J indicate the corresponding points in the
evolution track in the H-R diagram, plotted in
Fig. 10.2. See text for details.

envelope increase, and the burning shell occupies less and less mass (Fig. 10.3c). The latter portion of
hydrogen-shell burning is therefore referred to as thin shell burning. Most of the time between C and
D is spent in the thick shell burning phase at relatively small radii and logTeff > 4.05. The phase of
expansion from log Teff ≈ 4.05 to point D at logTeff ≈ 3.7 occurs on the Kelvin-Helmholtz timescale
and takes only a few times 105 yrs. A substantial fraction of the energy generated by shell burning is
absorbed by the expanding envelope (dashed yellow line in Fig. 10.3a), resulting in a decrease of the
surface luminosity between C and D.

The rapid evolution on a thermal timescale across the H-R diagram from the end of the main
sequence to Teff ≈ 5000 K is characteristic of all intermediate-mass stars. The probability of detecting
stars during this short-lived phase is very small, resulting in a gap in the distribution of stars in the
H-R diagram known as the Hertzsprung gap.

As point D is approached the envelope temperature decreases and the opacity in the envelope rises,
impeding radiative energy transport. The envelope grows increasingly unstable to convection, starting
from the surface, until at D a large fraction of the envelope mass has become convective. During
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Figure 10.4. Radial variation of various mass
shells (solid lines) in the 5 M⊙ (Z = 0.02) star of
Fig. 10.3, during the early post-main sequence
evolution. Each line is labelled with its mass co-
ordinate m in units of M⊙; the top-most curve
indicates the total radius R. Gray areas indicate
convection and red cross-hatched areas have in-
tense nuclear burning (ϵnuc > 10 L/M). Letters
B. . . E correspond to those in Fig. 10.3.

phase D–E the star is a red giant with a deep convective envelope. The star is then located close to the
Hayashi line in the H-R diagram, and while it continues to expand in response to core contraction,
the luminosity increases as the effective temperature remains at the approximately constant value
corresponding to the Hayashi line. The expansion of the star between D and E still occurs on the
thermal timescale, so the H-shell burning phase of intermediate-mass stars on the red-giant branch is
very short-lived.

At its deepest extent at point E, the base of the convective envelope is located at mass coordinate
m = 0.9 M⊙ which is below the maximum extent of the former convective core during central H-
burning (about 1.25 M⊙ at the start of the main sequence). Hence material that was formerly inside
the convective core, and has therefore been processed by hydrogen burning and the CNO-cycle, is
mixed throughout the envelope and appears at the surface. This process is called dredge-up and
occurs about halfway between D and E in Fig. 10.2. Dredge-up on the red giant branch also occurs in
low-mass stars and we defer its discussion to Sec. 10.2.3.

The helium cores of intermediate-mass stars remain non-degenerate during the entire H-shell
burning phase C–E, as can be seen in Fig. 10.1. These stars develop helium cores with masses larger
than 0.3 M⊙, the minimum mass for helium fusion discussed in Ch. 8. In the 5 M⊙ star at point E the
helium core mass is 0.6 M⊙ when a central temperature of 108 K is reached and helium is ignited in
the core. The ignition of helium halts further core contraction and envelope expansion and therefore
corresponds to a local maximum in luminosity and radius. Evolution through helium burning will be
discussed in Sec. 10.3.1.

10.2.2 Hydrogen-shell burning in low-mass stars

Compared to intermediate-mass stars, low-mass stars (with M ∼< 2 M⊙) have small or no convective
cores during central hydrogen burning, and when they leave the main sequence their cores are rel-
atively dense and already close to becoming degenerate (see Fig. 10.1). In stars with M ∼< 1.1 M⊙
the transition from central to shell hydrogen burning is gradual and initially Mc/M < 0.1 so the star
can remain in thermal equilibrium with an isothermal helium core. By the time the helium core has
grown to ≈ 0.1M, its density is large enough that electron degeneracy dominates the pressure and the
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Figure 10.5. Evolution of a 1M⊙ star of ini-
tial composition X = 0.7, Z = 0.02. The top
panel (a) shows the internal structure as a func-
tion of mass coordinate m. Gray areas are con-
vective, lighter-gray areas are semi-convective.
The red hatched regions show areas of nuclear
energy generation: ϵnuc > 5 L/M (dark red) and
ϵnuc > L/M (light red). The letters A. . . J indi-
cate corresponding points in the evolution track
in the H-R diagram, plotted in the bottom panel
(b). See text for details.

Schönberg-Chandrasekhar limit has become irrelevant. Therefore low-mass stars can remain in HE
and TE throughout hydrogen-shell burning and there is no Hertzsprung gap in the H-R diagram.

This can be seen in Fig. 10.5 which shows the internal evolution of a 1 M⊙ star with quasi-solar
composition in a Kippenhahn diagram and the corresponding evolution track in the H-R diagram. Hy-
drogen is practically exhausted in the centre at point B (Xc = 10−3) after 9 Gyr, after which nuclear
energy generation gradually moves out to a thick shell surrounding the isothermal helium core. Be-
tween B and C the core slowly grows in mass and contracts, while the envelope expands in response
and the burning shell gradually becomes thinner in mass. By point C the helium core has become
degenerate. At the same time the envelope has cooled and become largely convective, and the star
finds itself at the base of the red giant branch (RGB), close to the Hayashi line. The star remains
in thermal equilibrium throughout this evolution and phase B–C lasts about 2 Gyr for this 1 M⊙ star.
This long-lived phase corresponds to the well-populated subgiant branch in the H-R diagrams of old
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star clusters.
Stars with masses in the mass range 1.1 − 1.5 M⊙ show a very similar behaviour after the main

sequence, the only difference being the small convective core they develop during core H-burning.
This leads to a ‘hook’ in the evolution track at central H exhaustion (see Sec. 9.3). The subsequent
evolution during H-shell burning is similar, the core remaining in TE until it becomes degenerate on
the RGB and a correspondingly slow evolution across the subgiant branch. Stars with 1.5 ∼< M/M⊙ ∼<
2 do exhibit a small Hertzsprung gap as they reach the Schönberg-Chandrasekhar limit before their
cores become degenerate. After a period of slow, thick shell burning on the subgiant branch they
undergo a phase of rapid, thermal-timescale expansion until they reach the giant branch. In this case
the gap in Teff to be bridged is narrow because the main sequence is already relatively close in effective
temperature to the Hayashi line.

Regardless of these differences between stars of different mass during the early shell-H burning
phase, all stars with M ∼< 2 M⊙ have in common that their helium cores become degenerate before
the central temperature is high enough for helium ignition, and they settle into TE on the red giant
branch.

10.2.3 The red giant branch in low-mass stars

The evolution of low-mass stars along the red giant branch is very similar and almost independent
of the mass of the star. The reason for this similarity is that by the time the helium core has become
degenerate, a very strong density contrast has developed between the core and the envelope. The
envelope is so extended that it exerts very little weight on the compact core, while there is a very
large pressure gradient between core and envelope. The pressure at the bottom of the envelope (see
eq. 9.14) is very small compared to the pressure at the edge of the core and in the hydrogen-burning
shell separating core and envelope. Therefore the stellar structure depends almost entirely on the
properties of the helium core. Since the core is degenerate, its structure is independent of its thermal
properties (temperature) and only depends on its mass. Therefore the structure of a low-mass red
giant is essentially a function of its core mass.

As a result there is a very tight relation between the helium core mass and the luminosity of a red
giant, which is entirely due to the hydrogen shell-burning source. This core-mass luminosity relation
is very steep for small core masses, Mc ∼< 0.5 M⊙ and can be approximately described by a power law

L ≈ 2.3 × 105L⊙
(

Mc

M⊙

)6

(10.2)

Note that the luminosity of a low-mass red giant is independent of its total mass. Therefore the
evolution of all stars with M ∼< 2 M⊙ converges after the core becomes degenerate, which occurs
when Mc ≈ 0.1M, i.e. later for larger M. From this point on also the central density and temperature
start following almost the same evolution track (e.g. see Fig. 10.1b).

In the H-R diagram the star is located along the Hayashi line appropriate for its mass M. Higher-
mass red giants therefore have slightly higher Teff at the same luminosity.2 Note that the location
of the Hayashi line also depends on the metallicity of the star, since the effective temperature of a
completely convective star is determined by the H− opacity in the photosphere (Sec. 9.1.1). Because
the H− opacity increases with metallicity (Sec. 5.3), more metal-rich red giants of the same mass and
luminosity are located at lower Teff . This provides a means of deriving the metallicity of a globular
cluster from the location of its RGB stars in the H-R diagram.

2This means there is also a core-mass radius relation, but it is less tight than the Mc-L relation and depends slightly on
the total mass.

148



Figure 10.6. Evolution track of a 0.8M⊙ star of
rather low metallicity, Z = 0.004. The inset shows
the temporary decrease of luminosity when the H-
burning shell crosses the hydrogen discontinuity left
by the first dredge-up (corresponding to point E in
Fig. 10.5). The open circle indicates where first
dredge-up occurs. Figure from Salaris & Cassisi.

As the H-burning shell adds mass to the degenerate helium core, the core slowly contracts and the
radius and luminosity increase. The higher luminosity means the H-shell must burn at a higher rate,
leading to faster core-mass growth. The evolution along the RGB thus speeds up as the luminosity
increases (see Fig. 10.5). The density contrast between core and envelope increases and the mass
within the burning shell decreases, to ≈ 0.001 M⊙ near the tip of the RGB. Since less mass is contained
in the burning shell while the luminosity increases, the energy generation rate per unit mass ϵnuc
increases strongly, which means the temperature within the burning shell also increases. With it, the
temperature in the degenerate helium core increases. When the tip of the RGB is reached (at point F
in Fig. 10.5) at L ≈ 2000 L⊙ and a core mass of ≈ 0.45 M⊙, the temperature in the degenerate core
has reached a value close to 108 K and helium is ignited. This is an unstable process due to the strong
degeneracy, and leads to a thermonuclear runaway known as the helium flash (see Sec. 10.3.2).

First dredge-up and the luminosity bump

When the convective envelope reaches its deepest extent at point D in Fig. 10.5, it has penetrated into
layers that were processed by H-burning during the main sequence, and have been partly processed
by the CN-cycle. Up to point D the surface He abundance increases and the H abundance decreases,
but more noticeably the C/N ratio decreases by a large factor. This is called the first dredge-up phase
(later dredge-ups occur after He burning).

Some time later, at point E in Fig. 10.5 the H-burning shell has eaten its way out to the dis-
continuity left by the convective envelope at its deepest extent. The shell suddenly finds itself in an
environment with a higher H abundance (and a lower mean molecular weight). As a consequence
it starts burning at a slightly lower rate, leading to a slight decrease in luminosity (see Fig. 10.6).
The resulting loop (the star crosses this luminosity range three times) results in a larger number of
stars in this luminosity range in a stellar population. This ‘bump’ in the luminosity function has been
observed in many old star clusters.

Mass loss on the red giant branch

Another process that becomes important in low-mass red giants is mass loss. As the stellar luminosity
and radius increase as a star evolves along the giant branch, the envelope becomes loosely bound and
it is relatively easy for the large photon flux to remove mass from the stellar surface. The process
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driving mass loss in red giants is not well understood. When calculating the effect of mass loss in
evolution models an empirical formula due to Reimers is often used:

Ṁ = −4 × 10−13 η
L
L⊙

R
R⊙

M⊙
M

M⊙/yr (10.3)

where η is a parameter of order unity. Note that the Reimers formula implies that a fixed fraction of the
stellar luminosity is used to lift the wind material out of the gravitational potential well. However, the
relation is based on observations of only a handful of stars with well-determined stellar parameters.

A value of η ∼ 0.25− 0.5 is often used because it gives the right amount of mass loss on the RGB
to explain the morphology in the H-R diagram of stars in the subsequent helium-burning phase, on
the horizontal branch. The 1 M⊙ star of our example loses about 0.3 M⊙ of its envelope mass by the
time it reaches the tip of the giant branch.

10.3 The helium burning phase

As the temperature in the helium core approaches 108 K, the 3α reaction starts to produce energy at
a significant rate. This is the onset of the helium burning phase of evolution. Unlike for hydrogen
burning, the reactions involved in helium burning (see Sect. 6.4.2) are the same for all stellar masses.
However, the conditions in the core at the ignition of helium are very different in low-mass stars
(which have degenerate cores) from stars of higher mass (with non-degenerate cores). Therefore
these cases will be discussed separately.

10.3.1 Helium burning in intermediate-mass stars

We again take the 5 M⊙ star depicted in Figs. 10.2–10.3 as a typical example of an intermediate-mass
star. The ignition of helium takes place at point E in these figures. Since the core is non-degenerate
at this point (ρc ≈ 104 g/cm3, Fig. 10.1), nuclear burning is thermally stable and helium ignition
proceeds quietly. Owing to the high temperature sensitivity of the He-burning reactions, energy
production is highly concentrated towards the centre which gives rise to a convective core. The mass
of the convective core is 0.2 M⊙ initially and grows with time (unlike was the case for hydrogen
burning).

Initially, the dominant reaction is the 3α reaction which converts 4He into 12C inside the convec-
tive core. As the 12C abundance builds up, the 12C+α reaction gradually takes over, so that 16O is also
produced at a rate that increases with time (see Fig. 10.3b and compare to Fig. 6.6). When the central
He abundance XHe < 0.2 the mass fraction of 12C starts decreasing as a result of the diminishing
3α rate (which is proportional to X3

He). The final 12C/16O ratio is about 0.3, decreasing somewhat
with stellar mass. This is related to the fact that in more massive stars the central temperature during
He burning is larger. Note that the final 12C/16O ratio depends on the uncertain rate of the 12C(α, γ)
reaction, and the values given here are for the rate that is currently thought to be most likely.

The duration of the central helium burning phase in our 5 M⊙ star (E–H) is about 22 Myr, i.e.
approximately 0.27 × τMS. This seems surprisingly long given that the energy gain per gram of He
burning is only 10 % of that of H burning, while the luminosity of the star is (on average) somewhat
larger than during the main sequence. The reason can be discerned from Fig. 10.3a: most of the
luminosity during helium burning still comes from the H-burning shell surrounding the core, although
the luminosity contribution of He burning (LHe) increases with time and becomes comparable towards
the end of this phase.

We can understand the behaviour of LHe by considering that the properties of the helium core
essentially depend only on the core mass Mc and are hardly affected by the surrounding envelope. Be-
cause the envelope is very extended the pressure it exerts on the core (eq. 9.14) is negligible compared
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to the pressure inside the dense helium core. In fact LHe is a steep function of Mc, analogous to the
main-sequence M-L relation – indeed, if the envelope were stripped away, the bare helium core would
lie on a helium main sequence. The mass-luminosity relation for such helium main-sequence stars
can be approximately described by the homology relation (7.32) if the appropriate value of µ is used.
As a result of H-shell burning, Mc grows with time during the He-burning phase and LHe increases
accordingly. Another consequence is that in models computed with convective overshooting LHe is
larger on account of the larger core mass left after the main sequence (see Sect. 9.3.4). Therefore the
duration of the He burning phase (i.e. the appropriate nuclear timescale, τnuc ∝ Mc/LHe) is shorter in
models with overshooting. A 5 M⊙ star of the same composition computed with overshooting has a
main-sequence lifetime τMS = 100 Myr and a helium-burning lifetime of 16 Myr.

During helium burning intermediate-mass stars describe a loop in the H-R diagram (E–H in
Fig. 10.2). After He ignition at the tip of the giant branch, the envelope contracts (on the nuclear
timescale for helium burning) and the stellar radius decreases. Initially the luminosity also decreases
while the envelope is mostly convective (E–F) and the star is forced to move along its Hayashi line.
When most of the envelope has become radiative at point F, the star leaves the red giant branch and
the effective temperature increases. This is the start of a so-called blue loop, the hottest point of which
is reached at G when XHe ≈ 0.3. This also corresponds to a minimum in the stellar radius, after which
the envelope starts expanding and the star again approaches the giant branch when XHe ≈ 0.05. By
the end of core helium burning (H) the star is back on the Hayashi line, very close to its starting point
(E). If we consider stars of different masses, the blue extension of the loops in the HRD increases (the
loops extend to larger Teff values) for increasing mass, up to M ≈ 12 M⊙. (The behaviour of stars of
larger masses can be more complicated, one of the reasons being strong mass loss, and we defer a
discussion of this until Chapter 12.) On the other hand, for M ∼< 4 M⊙ the loops always stay close to
the red giant branch and do not become ’blue’.

The occurrence of blue loops is another example of a well-established result of detailed stellar
evolution calculations, that is difficult to explain in terms of basic physics. The detailed models
indicate that the occurrence and extension of blue loops depends quite sensitively on a number of
factors: the chemical composition (mainly Z), the mass of the helium core relative to the envelope,
and the shape of the hydrogen abundance profile above the core. It therefore also depends on whether
convective overshooting was assumed to take place during the main sequence: this produces a larger
core mass, which in turn has the effect of decreasing the blue-ward extension of the loops while
increasing their luminosity.

The blue loops are important because they correspond to a slow, nuclear timescale phase of evo-
lution. One therefore expects the corresponding region of the H-R diagram to be well populated.
More precisely, since intermediate-mass stars spend part of their He-burning phase as red giants and
part of it in a blue loop, one expects such stars to fill a wedge-shaped region in the HRD. Indeed one
finds many stars in the corresponding region, both in the solar neighbourhood (Fig. 1.1, although this
is dominated by low-mass stars) and in open clusters with ages less than ∼ 1 Gyr. The dependence
of the loops on overshooting also makes observational tests of overshooting using He-burning stars
possible. Another significant aspect of blue loops is that they are necessary for explaining Cepheid
variables (see Sect. 10.4), which are important extragalactic distance indicators.

10.3.2 Helium burning in low-mass stars

In low-mass stars (with M ∼< 2 M⊙) the helium burning phase differs from more massive stars in two
important aspects: (1) helium ignition occurs under degenerate conditions, giving rise to a helium
flash, and (2) all low-mass stars start helium burning with essentially the same core mass Mc ≈

0.45 M⊙ (Sect. 10.2.3). The luminosity of low-mass He-burning stars is therefore almost independent
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Figure 10.7. The helium flash. Evolu-
tion with time of the surface luminosity
(Ls), the He-burning luminosity (L3α)
and the H-burning luminosity (LH) dur-
ing the onset of He burning at the tip of
the RGB in a low-mass star. Time t = 0
corresponds to the start of the main he-
lium flash. Figure from Salaris & Cas-
sisi.

of their mass, giving rise to a horizontal branch in the HRD.

The helium flash

We again take a star of 1 M⊙ as a typical example of all low-mass stars. Helium ignition occurs
when Tc ≈ 108 K and ρc ≈ 106 g/cm3, so the helium core is strongly degenerate (see Fig. 10.1).
We have seen in Sect. 7.5.2 that helium burning under these conditions is thermally unstable: the
energy generated by the 3α reaction causes a temperature increase, rather than a decrease, and helium
ignition thus initiates a thermonuclear runaway. The reason is that the degenerate pressure is basically
independent of T , so that the energy released by fusion does not increase the pressure and therefore
leads to negligible expansion and negligible work done. All nuclear energy released therefore goes
into raising the internal energy. Since the internal energy of the degenerate electrons is a function
of ρ and hence remains almost unchanged, it is the internal energy of the non-degenerate ions that
increases and thus raises the temperature. As a result, the evolution is vertically upward in the ρc-Tc
diagram.3

The thermonuclear runaway leads to an enormous overproduction of energy: at maximum, the
local luminosity in the helium core is l ≈ 1010 L⊙ – similar to a small galaxy! However, this only
lasts for a few seconds. Since the temperature increases at almost constant density, degeneracy is
eventually lifted when T ≈ 3 × 108 K. Further energy release increases the pressure when the gas
starts behaving like an ideal gas and thus causes expansion and cooling. All the energy released by
the thermonuclear runaway is absorbed in the expansion of the core, and none of this nuclear power
reaches the surface. The expansion and cooling results in a decrease of the energy generation rate,
until it balances the energy loss rate and the core settles in thermal equilibrium at Tc ≈ 108 K and
ρc ≈ 2 × 104 g/cm3 (see Fig. 10.1). Further nuclear burning of helium is thermally stable.

Detailed numerical calculations of the helium flash indicate that this sequence of events indeed
takes place, but helium is not ignited in the centre but in a spherical shell at m ≈ 0.1 M⊙ where T
has a maximum. This off-centre temperature maximum is due to neutrino losses during the preceding
red giant phase. These neutrinos are not released by nuclear reactions, but by spontaneous weak
interaction processes occurring at high density and temperature (see Section 6.5). Since neutrinos
thus created escape without interacting with the stellar gas, this energy loss leads to effective cooling

3This part of the evolution is skipped in the 1 M⊙ model shown in Fig. 10.1, which is why a gap appears in the evolution
track. The evolution during the He flash is shown schematically as a dashed line for the 1 M⊙ model in Fig. 8.4.
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Figure 10.8. Evolution with time of the lu-
minosities and central abundances in a 1M⊙
star during the late part of the red giant branch
and during helium burning. Letters D. . . H cor-
respond to the same evolution phases as in
Fig. 10.5.

of the central region of the degenerate helium core. The mass coordinate at which Tmax occurs (and
where helium ignites) decreases somewhat with stellar mass.

The high local luminosity causes almost the entire region between the ignition point (at m ≈
0.1 M⊙) up to the bottom of the H-burning shell (at 0.45 M⊙) to become convective. The energy
released in the He flash is thus transported efficiently to the edge of the core, where it is absorbed
by expansion of the surrounding non-degenerate layers. Convection also mixes the product of the
He flash (12C produced in the 3α reaction) throughout the core. About 3 % of the helium in the core
is converted into carbon during the flash. Because the convective shell containing this carbon never
overlaps with the convective envelope surrounding the H-burning shell, this carbon does not reach the
surface. (However, this may be different at very low metallicity.)

After the He flash, the whole core expands somewhat but remains partially degenerate. In detailed
models a series of smaller flashes follows the main He flash (see Fig. 10.7) during ≈ 1.5 Myr, before
degeneracy in the centre is completely lifted and further He burning proceeds stably in a convective
core, as for intermediate-mass stars.

The horizontal branch

In our 1 M⊙ example star, the helium flash occurs at point F in Fig. 10.5. Evolution through the
helium flash was not calculated for the model shown in this figure. Instead, the evolution of the star
is resumed at point G when the helium core has become non-degenerate and has settled into TE with
stable He burning in the centre and H-shell burning around the core. (Models constructed in this
way turn out to be very similar to models that are computed all the way through the He flash, such
as shown in Fig. 10.7.) At this stage the luminosity and radius of the star have decreased by more
than an order of magnitude from the situation just before the He flash. Here we again see the mirror
principle at work: in this case the core has expanded (from a degenerate to a non-degenerate state)
and the envelope has simultaneously contracted, with the H-burning shell acting as a ‘mirror’.

In the 1 M⊙ star of solar composition shown in Fig. 10.5, helium burning occurs between G and
H. The position of the star in the H-R diagram does not change very much during this period, always
staying close (but somewhat to the left of) the red giant branch. The luminosity is ≈ 50 L⊙ for most

153



Figure 10.9. Location of the zero-age
horizontal branch (think gray line) for a
metallicity Z = 0.001 typical of glob-
ular clusters. These models have the
same core mass (0.489 M⊙) but varying
total (i.e. envelope) mass, which deter-
mines their position in the H-R diagram.
Evolution tracks during the HB for sev-
eral total mass values are shown as thin
solid lines. Figure from Maeder.

of the time; this value is determined mainly by the core mass. Since the core mass at the start of
helium burning is ≈ 0.45 M⊙ for all low-mass stars, independent of stellar mass, the luminosity at
which He burning occurs is also almost independent of mass. If we consider He-burning stars of
a given composition (e.g. in a star cluster), only the envelope mass may vary from star to star. At
solar metallicity, all such stars occupy about the same position in the HRD. This gives rise to a so-
called red clump in observed colour-magnitude diagrams of low-mass stellar populations (visible for
instance in Fig. 1.1). However, the radius and effective temperature of He-burning stars depends on
their envelope mass. Stars with a small envelope mass (either because of a smaller initial mass, or
because they suffered a larger amount of mass loss on the RGB) can be substantially hotter than the
one shown in Fig. 10.5. Furthermore, at low metallicity the critical envelope mass, below which He-
burning stars become small and hot, is larger. Stars with different amounts of mass remaining in their
envelopes can then form a horizontal branch in the HRD (Fig. 10.9). Horizontal branches are found
in old stellar populations, especially in globular clusters of low metallicity (an example is the globular
cluster M3 shown in Fig. 1.2). The observed distribution of stars along the HB varies greatly from
cluster to cluster, and the origin of these different HB morphologies is not fully understood.

The duration of the core helium burning phase is about 120 Myr, again independent of stellar
mass. While this is longer than in intermediate-mass stars, it is a much shorter fraction of the main-
sequence lifetime because of the much higher luminosity of the He-burning phase. The evolution of
the stellar structure during helium burning is qualitatively similar to that of intermediate-mass stars;
see Figs. 10.5a and 10.8. The most striking differences are:

• The contribution of He-burning to the stellar luminosity is larger, especially towards the end of
the phase. This is due to the relatively small envelope mass.

• The development of a substantial semi-convective region on top of the convective core. This
is related to a difference in opacity between the C-rich convective core and the He-rich zone
surrounding it, and gives rise to partial (non-homogeneous) mixing in this region.

• The occurrence of ‘breathing pulses’, giving rise to the sudden jumps in the central composition
and in the luminosity. Whether these are real or simply a numerical artifact of one-dimensional
stellar models is not clear.4

4For details about the latter two effects, see either Salaris & Cassisi or John Lattanzio’s tutorial at
http://www.maths.monash.edu.au/j̃ohnl/StellarEvolnDemo/.
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Figure 10.10. The period-luminosity relation for classical Cepheids in the Large Magellanic Cloud. Luminos-
ity is expressed as absolute magnitude in the B band (left) and in the V band. Figure from Sandage et al. (2004,
A&A 424, 43).

10.4 Pulsational instability during helium burning

During their post-main sequence evolution, stars may undergo one or more episodes during which
they are unstable to radial pulsations. The most important manifestation of these pulsations are the
Cepheid variables, luminous pulsating stars with periods between about 2 and 100 days. It turns out
that there is a well-defined correlation between the pulsation period and the luminosity of these stars,
first discovered for Cepheids in the Small Magellanic Cloud. A modern version of this empirical
relation is shown in Fig. 10.10. Their importance for astronomy lies in the fact that the period can
be easily determined, even for stars in other galaxies, and thus provides an estimate of the absolute
luminosity of such a star, making Cepheids important standard candles for the extragalactic distance
scale.

Cepheids lie along a pulsational instability strip in the H-R diagram (see Fig. 10.11). During
the evolution of an intermediate-mass star, this instability strip is crossed up to three times. The
first crossing occurs during H-shell burning (C–D in Fig. 10.2) but this is such a rapid phase that the
probability of catching a star in this phase is very small. In stars with sufficiently extended blue loops,
another two crossings occur (F-G and G–H) during a much slower evolution phase. Cepheids must
thus be helium-burning stars undergoing a blue loop. Equivalently, the RR Lyrae variables seen in old
stellar populations lie along the intersection of the instability strip and the horizontal branch.

Since pulsation is a dynamical phenomenon, the pulsation period is closely related to the dy-
namical timescale (eq. 2.18). Therefore the pulsation period Π is related the mean density: to first
approximation once can write Π ∝ ρ̄−1/2 ∝ M−1/2R3/2. Each passage of the instability strip yields a
fairly well-defined radius and luminosity. Passage at a larger L corresponds to a larger R and therefore
to a larger Π, because the variation in mass is smaller than that in radius and enters the relation with
a smaller power. This provides a qualitative explanation of the period-luminosity relation. The min-
imum observed period should correspond to the the lowest-mass star undergoing a blue loop. Also
the number of Cepheids as a function of period must correspond to the time it takes for a star of the
corresponding mass to cross the instability strip. Thus Cepheids provide a potential test of stellar
evolution models.
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10.4.1 Physics of radial stellar pulsations

The radial oscillations of a pulsating star result from pressure waves, i.e sound waves that resonate in
the stellar interior. These radial oscillation modes are essentially standing waves, with a node at the
centre and an open end at the stellar surface – not unlike the sound waves in an organ pipe. Similarly,
there are several possible modes of radial pulsation, the fundamental mode having just one node at the
centre, while the first and second overtonemodes have one or two additional nodes between the centre
and surface, etc. Most radially pulsating stars, such as Cepheids, are oscillating in their fundamental
mode.

In order to understand what powers the pulsations of stars in the instability strip, let us first
reconsider the dynamical stability of stars. We have seen in Sec. 7.5.1 that overall dynamical stability
requires γad >

4
3 . In this situation a perturbation of pressure equilibrium will be restored, the restoring

force being larger the more γad exceeds the critical value of 4
3 . In practice, due to the inertia of the

layers under consideration, this will give rise to an oscillation around the equilibrium structure. A
linear perturbation analysis of the equation of motion (2.11) shows that a layer at mass coordinate m
having equilibrium radius r0 will undergo radial oscillations with a frequency

ω2 = (3γad − 4)
Gm
r3

0
, (10.4)

if we assume the oscillations are adiabatic. Note that ω2 > 0 as long as γad >
4
3 , consistent with

dynamical stability. On the other hand, for γad <
4
3 the frequency becomes imaginary, which indicates

Figure 10.11. Occurrence of various classes
of pulsating stars in the H-R diagram, over-
laid on stellar evolution tracks (solid lines).
Cepheid variables are indicated with ‘Ceph’,
they lie within the pulsational instability strip
in the HRD (long-dashed lines). Their equiv-
alents are the RR Lyrae variables among
HB stars (the horizontal branch is shown as
a dash-dotted line), and the δ Scuti stars
(δSct) among main-sequence stars. Pulsa-
tional instability is also found among lumi-
nous red giants (Mira variables), among mas-
sive main-sequence stars – βCep variables
and slowly pulsating B (SPB) stars, among
extreme HB stars known as subdwarf B stars
(sdBV) and among white dwarfs. Figure
from Christensen-Dalsgaard (2004).
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an exponential growth of the perturbation, i.e. dynamical instability. A proper average of ω over
the star yields the pulsation frequency of the fundamental mode. We can obtain an approximate
expression by replacing m with the total mass M and r0 by the radius R, and taking γad constant
throughout the star. This yields

Π0 =
2π

√

(3γad − 4)GM/R3
=

(

3π
(3γad − 4)Gρ̄

)1/2

. (10.5)

This is indeed the same expression as for the dynamical timescale, to within a factor of unity. One
can write

Π = Q
(

ρ̄

ρ̄⊙

)−1/2

, (10.6)

where the pulsation constant Q depends on the structure of the star and is different for different modes
of pulsation. For the fundamental mode, Q ≈ 0.04 days and Q is smaller for higher overtones.

Driving and damping of pulsations

In an exactly adiabatic situation the oscillations will maintain the same (small) amplitude. In reality
the situation is never exactly adiabatic, which means that the oscillations will generally be damped,
unless there is an instability that drives the oscillation, i.e. that makes their amplitude grow.

The requirement for growth of an oscillation is that the net work done by a mass element in the
star on its surroundings during an oscillation cycle must be positive,

∮

P dV > 0. By the first law of
thermodynamics, this work is provided by a net amount of heat being absorbed by the element during
the cycle,

∮

dQ =
∮

P dV > 0.

The change in entropy of the mass element is dS = dQ/T . Since entropy is a state variable,
∮

dQ/T =
0 during a pulsation cycle. A mass element maintaining constant T during a cycle therefore cannot
absorb any heat. Suppose that the temperature undergoes a small variation T (t) = T0 + δT (t) around
an average value T0. Then

0 =
∮

dQ
T
=

∮

dQ
T0 + δT

≈

∮

dQ
T0

(

1 −
δT
T0

)

, (10.7)

or
∮

dQ ≈
∮

dQ
δT
T0
. (10.8)

Eq. (10.8) means that heat must enter the element (dQ > 0) when the temperature is high (δT > 0), i.e.
when the layer is compressed, and/or heat must leave the layer (dQ < 0) during the low-temperature
part of the cycle (δT < 0), i.e. during expansion. This is known in thermodynamics as a heat engine,
and is analogous to what happens in a normal combustion motor, such as a car engine. In a pulsating
star, some layers may absorb heat and do work to drive the pulsation, while other layers may lose
heat and thereby damp the pulsation (if

∮

dQ =
∮

P dV < 0). To determine the overall effect, the
contributions

∮

P dV must be integrated over all mass layers in the star.
In stars there are two possible mechanisms that can drive pulsations:
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• If nuclear reactions occur in a region that is compressed during a pulsation, then the increase
in T will lead to an increase in the energy generation rate ϵnuc. This satisfies the criterion
(10.8) and is known as the ϵ-mechanism. Although this is always present, the amplitudes of the
oscillations induced by this mechanism in the core of a star are usually so small that it cannot
drive any significant pulsations. It may have important effects in very massive stars, but it is
certainly not relevant for explaining Cepheid pulsations.

• If during the compression of a layer it becomes more opaque, then the energy flowing through
this layer will be ‘trapped’. The resulting increase in temperature and pressure pushes the
layer outward. During the resulting expansion, the gas will become more transparent again and
release the trapped heat. This so-called κ-mechanism can thus maintain the oscillation cycle
and drive radial pulsations.

The condition for the κ-mechanism to work is therefore that the opacity must increase when the gas
is compressed. The compression during a pulsation cycle is not exactly adiabatic, otherwise the
mechanism would not work, but it is very close to adiabatic. Then the condition can be written as
(d ln κ/d ln P)ad > 0. We can write this as

(

d ln κ
d ln P

)

ad
=

(

∂ ln κ
∂ ln P

)

T
+

(

∂ ln κ
∂ lnT

)

P

(

d lnT
d ln P

)

ad
≡ κP + κT ∇ad, (10.9)

where κP and κT are shorthand notation for the partial derivatives of ln κ with respect to ln P and lnT ,
respectively. For successful pulsations we must therefore have

κP + κT ∇ad > 0. (10.10)

The instability strip and the period-luminosity relation

In stellar envelopes the opacity can be roughly described by a Kramers law, κ ∝ ρT−3.5, which when
combined with the ideal-gas law implies κP ≈ 1 and κT ≈ −4.5. Since for an ionized ideal gas
∇ad = 0.4, we normally have κP + κT ∇ad < 0, i.e. κ decreases upon compression and the star will not
pulsate. In order to satisfy (10.10) one must have either:

• κT > 0, which is the case when the H− opacity dominates, at T < 104 K. This may contribute to
the driving of pulsations in very cool stars, such as Mira variables (Fig. 10.11), but the Cepheid
instability strip is located at too high Teff for this to be important.

• In case of a Kramers-like opacity, a small value of ∇ad can lead to pulsation instability. For
κP ≈ 1 and κT ≈ −4.5, eq. (10.10) implies ∇ad ∼< 0.22. Such small values of ∇ad can be found
in partial ionization zones, as we have seen in Sec. 3.5 (e.g. see Fig. 3.5).

Stars generally have two important partial ionization zones, one at T ≈ 1.5 × 104 K where both
H ↔ H+ + e− and He ↔ He+ + e− occur, and one at T ≈ 4 × 104 K where helium becomes twice
ionized (He+ ↔ He++ + e−). These partial ionization zones can explain the location of the instability
strip in the H-R diagram, as follows.

• At large Teff (for Teff ∼> 7500 K, the ‘blue edge’ of the instability strip) both ionization zones lie
near the surface, where the density is very low. Although this region is indeed non-adiabatic,
the mass and heat capacity of these zones is too small to drive pulsations effectively.

• As Teff decreases, the ionization zones lie deeper into the stellar envelope. The mass and
heat capacity in the partial ionization zones increase, while remaining non-adiabatic enough to
absorb sufficient heat to drive pulsations.
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• At still smaller Teff (for Teff ∼< 5500 K, the ‘red edge’ of the instability strip) the partial ioniza-
tion zones lie at such high density that the gas behaves almost adiabatically. Although these
zones still have a destabilizing effect, they cannot absorb enough heat to make the star as a
whole unstable.

Thus the instability strip occupies a narrow region in the H-R diagram, as indicated in Fig. 10.11. Its
location is related to the depth of the partial ionization zones. Since these zones occur in a specific
temperature range, the instability strip also occurs for a narrow range of Teff values, and is almost
vertical in the H-R diagram (and parallel to the Hayashi line).

We can understand the period-luminosity relation from the dependence of the pulsation period on
mass and radius (eq. 10.6). Since Cepheids follow a mass-luminosity relation, M ∝ Lα, and since
L ∝ R2T 4

eff , we can write

Π ∝ Q
R3/2

M1/2 ∝ Q
L(3/4)−(1/2α)

T 3
eff

.

With α ≈ 3 and Teff ≈ constant, we find Π ∝ L0.6 or log L ≈ 1.7 logΠ + const. Detailed numerical
models give

log L = 1.270 logΠ + 2.570 (10.11)

for the blue edge, and a slope of 1.244 and a constant 2.326 for the red edge. The smaller slope than
in the simple estimate is mainly due to the fact that the effective temperature of the instability strip is
not constant, but slightly decreases with increasing L.

Suggestions for further reading

The contents of this chapter are also covered by Chapters 25.3.2 and 26.1–26.5 of Maeder, while
stellar pulsations and Cepheids are treated in detail in Chapter 15. See also Kippenhahn & Weigert,
Chapters 31 and 32.

Exercises

10.1 Conceptual questions

(a) Why does the luminosity of a star increase on the main sequence? Why do low-mass stars, like
the Sun, expand less during the main sequence than higher-mass stars?

(b) Explain what happens during the ‘hook’ at the end of the main sequence of stars more massive
than the Sun.

(c) What is convective overshooting? Think of at least three effects of overshooting on the evolution
of a star.

(d) Explain the existence of a Hertzsprung gap in the HRD for high-mass stars. Why is there no
Hertzsprung gap for low-mass stars?

(e) What do we mean by the mirror principle?
(f) Why does the envelope become convective on the red giant branch? What is the link with the

Hayashi line?
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10.2 Evolution of the abundance profiles

(a) Use Fig. 10.3 to sketch the profiles of the hydrogen and helium abundances as a function of the
mass coordinate in a 5 M⊙ star, at the ages corresponding to points C, E, G and H. Try to be as
quantitative as possible, using the information provided in the figure.

(b) Do the same for a 1 M⊙ star, using Figs. 10.5 and 10.8, at points B, D, F and H.
(c) The abundances plotted in Figs. 10.3 and 10.8 are central abundances. What happens to the abun-

dances at the surface?

10.3 Red giant branch stars

(a) Calculate the total energy of the Sun assuming that the density is constant, i.e. using the equation
for potential energy Egr = −

3
5GM

2/R. In later phases, stars like the Sun become red giants, with
R ≈ 100R⊙. What would be the total energy, if the giant had constant density. Assume that the
mass did not change either. Is there something wrong? If so, why is it?

(b) What really happens is that red giants have a dense, degenerate, pure helium cores which grow to
∼ 0.45M⊙ at the end of the red giant branch (RGB). What is the maximum radius the core can
have for the total energy to be smaller than the energy of the Sun? (N.B. Ignore the envelope –
why are you allowed to do this?)

(c) For completely degenerate stars, one has

R = 2.6 × 109 µe
−5/3

(

M
M⊙

)−1/3

cm, (10.12)

where µe is the molecular weight per electron and µe = 2 for pure helium. Is the radius one finds
from this equation consistent with upper limit derived in (b)?

10.4 Core mass-luminosity relation for RGB stars
Low-mass stars on the RGB obey a core mass-luminosity relation, which is approximately given by
eq. (10.2). The luminosity is provided by hydrogen shell burning.

(a) Derive relation between luminosity L and the rate at which the core grows dMc/dt. Use the energy
released per gram in hydrogen shell burning.

(b) Derive how the core mass evolves in time, i.e, Mc = Mc(t).
(c) Assume that a star arrives to the RGB when its core mass is 15% of the total mass, and that it

leaves the RGB when the core mass is 0.45 M⊙. Calculate the total time a 1 M⊙ star spends on
the RGB and do the same for a 2 M⊙ star. Compare these to the main sequence (MS) lifetimes of
these stars.

(d) What happens when the core mass reaches 0.45 M⊙? Describe the following evolution of the star
(both its interior and the corresponding evolution in the HRD).

(e) What is the difference in evolution with stars more massive than 2 M⊙?

10.5 Jump in composition
Consider a star with the following distribution of hydrogen:

X(m) =
{

0.1 for m < mc
0.7 for m ≤ mc

(10.13)

(a) In this star a discontinuous jump in the composition profile occurs at m = mc. What could have
caused such a chemical profile? Explain why P and T must be continuous functions.

(b) Calculate the jump in density ∆ρ/ρ.
(c) Also calculate the jump in opacity, ∆κ/κ, if the opacity is given as:

- Kramers: κb f ∼ Z(1 + X)ρT−3.5

- Electron scattering: κe = 0.2(1 + X)
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