
Chapter 3

Equation of state of stellar interiors

3.1 Local thermodynamic equilibrium

Empirical evidence shows that in a part of space isolated from the rest of the Universe, matter and
radiation tend towards a state of thermodynamic equilibrium. This equilibrium state is achieved when
sufficient interactions take place between the material particles (‘collisions’) and between the pho-
tons and mass particles (scatterings and absorptions). In such a state of thermodynamic equilibrium
the radiation field becomes isotropic and the photon energy distribution is described by the Planck
function (blackbody radiation). The statistical distribution functions of both the mass particles and
the photons are then characterized by a single temperature T .

We know that stars are not isolated systems, because they emit radiation and generate (nuclear)
energy in their interiors. Indeed, the surface temperature of the Sun is about 6000 K, while we have
estimated from the virial theorem (Sec. 2.3) that the interior temperature must of the order of 107 K.
Therefore stars are not in global thermodynamic equilibrium. However, it turns out that locally within
a star, a state of thermodynamic equilibrium is achieved. This means that within a region much smaller
than the dimensions of a star (≪ R∗), but larger than the average distance between interactions of the
particles (both gas particles and photons), i.e. larger than the mean free path, there is a well-defined
local temperature that describes the particle statistical distributions.

We can make this plausible by considering the mean free path for photons:

ℓph = 1/κρ

where κ is the opacity coefficient, i.e. the effective cross section per unit mass. For fully ionized
matter, a minimum is given by the electron scattering cross section, which is κes = 0.4 cm2/g (see
Ch. 5). The average density in the Sun is ρ̄ = 1.4 g/cm3, which gives a mean free path of the order
of ℓph ∼ 1 cm. In other words, stellar matter is very opaque to radiation. The temperature difference
over a distance ℓph, i.e. between emission and absorption, can be estimated as

∆T ≈
dT
dr
ℓph ≈

Tc
R
ℓph ≈

107

1011 ≈ 10−4 K

which is a tiny fraction (10−11) of the typical interior temperature of 107 K. Using a similar estimate,
it can be shown that the mean free path for interactions between ionized gas particles (ions and
electrons) is several orders of magnitude smaller than ℓph. Hence a small region can be defined
(a ‘point’ for all practical purposes) which is > ℓph but much smaller than the length scale over
which significant changes of thermodynamic quantities occur. This is called local thermodynamic
equilibrium (LTE). We can therefore assume a well-defined temperature distribution inside the star.
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Furthermore, the average time between particle interactions (the mean free time) is much shorter
than the timescale for changes of the macroscopic properties. Therefore a state of LTE is secured
at all times in the stellar interior. The assumption of LTE1 constitutes a great simplification. It
enables the calculation of all thermodynamic properties of the stellar gas in terms of the local values
of temperature, density and composition, as they change from the centre to the surface.

3.2 The equation of state

The equation of state (EOS) describes the microscopic properties of stellar matter, for given density
ρ, temperature T and composition Xi. It is usually expressed as the relation between the pressure and
these quantities:

P = P(ρ,T, Xi) (3.1)

Using the laws of thermodynamics, and a similar equation for the internal energy U(ρ,T, Xi), we can
derive from the EOS the thermodynamic properties that are needed to describe the structure of a star,
such as the specific heats cV and cP, the adiabatic exponent γad and the adiabatic temperature gradient
∇ad.

An example is the ideal-gas equation of state, which in the previous chapters we have tacitly
assumed to hold for stars like the Sun:

P = nkT or P =
k
µmu

ρT.

In this chapter we will see whether this assumption was justified, and how the EOS can be extended to
cover all physical conditions that may prevail inside a star. The ideal-gas law pertains to particles that
behave according to classical physics. However, both quantum-mechanical and special relativistic ef-
fects may be important under the extreme physical conditions in stellar interiors. In addition, photons
(which can be described as extremely relativistic particles) can be an important source of pressure.

We can define an ideal or perfect gas as a mixture of free, non-interacting particles. Of course
the particles in such a gas do interact, so more precisely we require that their interaction energies
are small compared to their kinetic energies. In that case the internal energy of the gas is just the
sum of all kinetic energies. From statistical mechanics we can derive the properties of such a perfect
gas, both in the classical limit (recovering the ideal-gas law) and in the quantum-mechanical limit
(leading to electron degeneracy), and both in the non-relativistic and in the relativistic limit (e.g. valid
for radiation). This is done in Sect. 3.3.

In addition, various non-ideal effects may become important. The high temperatures (> 106 K) in
stellar interiors ensure that the gas will be fully ionized, but at lower temperatures (in the outer layers)
partial ionization has to be considered, with important effects on the thermodynamic properties (see
Sect. 3.5). Furthermore, in an ionized gas electrostatic interactions between the ions and electrons
may be important under certain circumstances (Sect. 3.6).

3.3 Equation of state for a gas of free particles

We shall derive the equation of state for a perfect gas from the principles of statistical mechanics. This
provides a description of the ions, the electrons, as well as the photons in the deep stellar interior.

1N.B. note the difference between (local) thermodynamic equilibrium (Tgas(r) = Trad(r) = T (r)) and the earlier defined,
global property of thermal equilibrium (Etot = const, or L = Lnuc).
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Let n(p) be the distribution of momenta of the gas particles, i.e. n(p) dp represents the number of
particles per unit volume with momenta p ∈ [p . . . p + dp]. If n(p) is known then the total number
density (number of particles per unit volume), the internal energy density (internal energy per unit
volume) and the pressure can be obtained from the following integrals:

number density n =
∫ ∞

0
n(p) dp (3.2)

internal energy density U =
∫ ∞

0
ϵpn(p) dp = n⟨ϵp⟩ (3.3)

pressure P = 1
3

∫ ∞

0
pvpn(p) dp = 1

3n⟨pvp⟩ (3.4)

Here ϵp is the kinetic energy of a particle with momentum p, and vp is its velocity. Eq. (3.2) is trivial,
and eq. (3.3) follows from the perfect-gas assumption. The pressure integral eq. (3.4) requires some
explanation.

Consider a gas of n particles in a cubical box with sides of length L = 1 cm. Each particle bounces
around in the box, and the pressure on one side of the box results from the momentum imparted by
all the particles colliding with it. Consider a particle with momentum p and corresponding velocity v
coming in at an angle θ with the normal to the surface, as depicted in Fig. 3.1. The time between two
collisions with the same side is

∆t =
2L

v cos θ
=

2
v cos θ

.

The collisions are elastic, so the momentum transfer is twice the momentum component perpendicular
to the surface,

∆p = 2p cos θ. (3.5)

The momentum transferred per particle per second and per cm2 is therefore

∆p
∆t
= vp cos2 θ. (3.6)

The number of particles in the box with p ∈ [p . . . p + dp] and θ ∈ [θ . . . θ + dθ] is denoted as
n(θ, p) dθ dp. The contribution to the pressure from these particles is then

dP = vp cos2 θ n(θ, p) dθ dp. (3.7)

θ

= 1cmL

Figure 3.1. Gas particle in a cubical box with a volume of 1 cm3. Each
collision with the side of the box results in a transfer of momentum; the
pressure inside the box is the result of the collective momentum transfers of
all n particles in the box.
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Since the momenta are distributed isotropically over all directions within a solid angle 2π, and
the solid angle dω subtended by those particles with θ ∈ [θ . . . θ + dθ] equals 2π sin θ dθ, we have
n(θ, p) dθ = n(p) sinθ dθ and

dP = vp n(p) cos2 θ sin θ dθ dp. (3.8)

The total pressure is obtained by integrating over all angles (0 ≤ θ ≤ π/2) and momenta. This results
in eq. (3.4) since

∫ π/2
0 cos2 θ sin θ dθ =

∫ 1
0 cos2 θ d cos θ = 1

3 .

3.3.1 Relation between pressure and internal energy

In general, the particle energies and velocities are related to their momenta according to special rela-
tivity:

ϵ2 = p2c2 + m2c4, ϵp = ϵ − mc2 (3.9)

and

vp =
∂ϵ

∂p
=
pc2

ϵ
. (3.10)

We can obtain generally valid relations between the pressure and the internal energy of a perfect gas
in the non-relativistic (NR) limit and the extremely relativistic (ER) limit:

NR limit: in this case the momenta p ≪ mc, so that ϵp = ϵ − mc2 = 1
2 p

2/m and v = p/m. Therefore
⟨pv⟩ = ⟨p2/m⟩ = 2⟨ϵp⟩ so that eq. (3.4) yields

P = 2
3U (3.11)

ER limit: in this case p ≫ mc, so that ϵp = pc and v = c. Therefore ⟨pv⟩ = ⟨pc⟩ = ⟨ϵp⟩, and eq. (3.4)
yields

P = 1
3U (3.12)

These relations are generally true, for any particle (electrons, ions and photons). We will apply
this in the coming sections. As we saw in the previous Chapter, the change from 2

3 to 1
3 in the relation

has important consequences for the virial theorem, and for the stability of stars.

3.3.2 The classical ideal gas

Using the tools of statistical mechanics, we can address the origin of the ideal-gas law. The mo-
mentum distribution n(p) for classical, non-relativistic particles of mass m in LTE is given by the
Maxwell-Boltzmann distribution:

n(p) dp =
n

(2πmkT )3/2 e
−p2/2mkT 4πp2 dp. (3.13)

Here the exponential factor (e−ϵp/kT ) represents the equilibrium distribution of kinetic energies, the
factor 4πp2 dp is the volume in momentum space (px, py, pz) for p ∈ [p . . . p + dp], and the factor
n/(2πmkT )3/2 comes from the normalization of the total number density n imposed by eq. (3.2). (You
can verify this by starting from the standard integral

∫ ∞
0 e−ax2 dx = 1

2
√
π/a, and differentiating once

with respect to a to obtain the integral
∫ ∞

0 e−ax2 x2 dx.)
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The pressure is calculated by using v = p/m for the velocity in eq. (3.4):

P = 1
3

n
(2πmkT )3/2

∫ ∞

0

p2

m
e−p

2/2mkT 4πp2 dp. (3.14)

By performing the integration (for this you need to differentiate
∫ ∞

0 e−ax2 x2 dx once more with respect
to a) you can verify that this indeed yields the ideal gas law

P = nkT . (3.15)

(N.B. This derivation is for a gas of non-relativistic classical particles, but it can be shown that the
same relation P = nkT is also valid for relativistic classical particles.)

3.3.3 Mixture of ideal gases, and the mean molecular weight

The ideal gas relation was derived for identical particles of mass m. It should be obvious that for
a mixture of free particles of different species, it holds for the partial pressures of each of the con-
stituents of the gas separately. In particular, it holds for both the ions and the electrons, as long as
quantum-mechanical effects can be ignored. The total gas pressure is then just the sum of partial
pressures

Pgas = Pion + Pe =
∑

i Pi + Pe = (
∑

i ni + ne)kT = nkT

where ni is the number density of ions of element i, with mass mi = Aimu and charge Zie. Then ni is
related to the density and the mass fraction Xi of this element as

ni =
Xi ρ
Ai mu

and nion =
∑

i

Xi
Ai

ρ

mu
≡

1
µion

ρ

mu
, (3.16)

which defines the mean atomic mass per ion µion. The partial pressure due to all ions is then

Pion =
1
µion

ρ

mu
kT =

R
µion

ρT. (3.17)

We have used here the universal gas constant R = k/mu = 8.31447 × 107 erg g−1 K−1. The number
density of electrons is given by

ne =
∑

i
Zini =

∑

i

ZiXi
Ai

ρ

mu
≡

1
µe

ρ

mu
, (3.18)

which defines the mean molecular weight per free electron µe. As long as the electrons behave like
classical particles, the electron pressure is thus given by

Pe =
1
µe

ρ

mu
kT =

R
µe
ρT. (3.19)

When the gas is fully ionized, we have for hydrogen Zi = Ai = 1 while for helium and the most
abundant heavier elements, Zi/Ai ≈ 1

2 . In terms of the hydrogen mass fraction X we then get

µe ≈
2

1 + X
, (3.20)

which for the Sun (X = 0.7) amounts to µe ≈ 1.18, and for hydrogen-depleted gas gives µe ≈ 2.
The total gas pressure is then given by

Pgas = Pion + Pe =
( 1
µion
+

1
µe

)

RρT =
R
µ
ρT (3.21)
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where the mean molecular weight µ is given by

1
µ
=

1
µion
+

1
µe
=

∑

i

(Zi + 1)Xi
Ai

. (3.22)

It is left as an exercise to show that for a fully ionized gas, µ can be expressed in terms of the mass
fractions X, Y and Z as

µ ≈
1

2X + 3
4Y +

1
2Z

(3.23)

if we assume that for elements heavier than helium, Ai ≈ 2Zi ≈ 2(Zi + 1).

3.3.4 Quantum-mechanical description of the gas

According to quantum mechanics, the accuracy with which a particle’s location and momentum can
be known simultaneously is limited by Heisenberg’s uncertainty principle, i.e. ∆x∆p ≥ h. In three
dimensions, this means that if a particle is located within a volume element ∆V then its localization
within three-dimensional momentum space ∆3p is constrained by

∆V ∆3p ≥ h3. (3.24)

The quantity h3 defines the volume in six-dimensional phase space of one quantum cell. The number
of quantum states in a spatial volume V and with momenta p ∈ [p . . . p + dp] is therefore given by

g(p) dp = gs
V
h3 4πp2 dp, (3.25)

where gs is the number of intrinsic quantum states of the particle, e.g. spin or polarization.
The relative occupation of the available quantum states for particles in thermodynamic equilib-

rium depends on the type of particle:

• fermions (e.g. electrons or nucleons) obey the Pauli exclusion principle, which postulates that
no two such particles can occupy the same quantum state. The fraction of states with energy ϵp
that will be occupied at temperature T is given by

fFD(ϵp) =
1

e(ϵp−µ)/kT + 1
, (3.26)

which is always ≤ 1.

• bosons (e.g. photons) have no restriction on the number of particles per quantum state, and the
fraction of states with energy ϵp that is occupied is

fBE(ϵp) =
1

e(ϵp−µ)/kT − 1
, (3.27)

which can be > 1.

The actual distribution of momenta for particles in LTE is given by the product of the occupation
fraction f (ϵp) and the number of quantum states, given by eq. (3.25). The quantity µ appearing in
eqs. (3.26) and (3.27) is the so-called chemical potential. It can be seen as a normalization constant,
determined by the total number of particles in the volume considered (i.e., by the constraint imposed
by eq. 3.2).
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Figure 3.2. Left: Electron momentum distributions n(p) for an electron density of ne = 6 × 1027 cm−3 (corre-
sponding to ρ = 2 × 104 g/cm−3 if µe = 2), and for three different temperatures: T = 2 × 107 K (black lines),
2 × 106 K (red lines) and 2 × 105 K (blue lines). The actual distributions, governed by quantum mechanics,
are shown as solid lines while the Maxwell-Boltzmann distributions for the same ne and T values are shown
as dashed lines. The dotted line nmax is the maximum possible number distribution if all quantum states with
momentum p are occupied. Right: Distributions in the limit T = 0, when all lowest available momenta are
fully occupied. The blue line is for the same density as in the left panel, while the red line is for a density two
times as high.

3.3.5 Electron degeneracy

Electrons are fermions with two spin states, i.e. ge = 2. According to eq. (3.25), the maximum
number density of electrons with momentum p allowed by quantum mechanics is therefore

nmax(p) dp =
ge

h3 4πp2 dp =
8π
h3 p2 dp. (3.28)

This is shown as the dotted line in Fig. 3.2. The actual momentum distribution of electrons ne(p) is
given by the product of eq. (3.28) and eq. (3.26). In the non-relativistic limit we have ϵp = p2/2me,
giving

ne(p) dp =
2
h3

1
e(p2/2mekT )−ψ + 1

4πp2 dp, (3.29)

where we have replaced the chemical potential by the degeneracy parameter ψ = µ/kT . The value of
ψ is determined by the constraint that

∫ ∞
0 ne(p) dp = ne (eq. 3.2).

The limitation imposed by the Pauli exclusion principle means that electrons can exert a higher
pressure than predicted by classical physics (eq. 3.19). To illustrate this, in Fig. 3.2 the momentum
distribution eq. (3.29) is compared to the Maxwell-Boltzmann distribution for electrons, eq. (3.13),

nMB(p) dp =
ne

(2πmekT )3/2 e
−p2/2mekT 4πp2 dp. (3.30)

The situation shown is for an electron density ne = 6 × 1027 cm−3, which corresponds to a mass
density of 2 × 104 g/cm−3 (assuming a hydrogen-depleted gas with µe = 2). At high temperatures,
T = 2 × 107 K, the momentum distribution (solid line) nearly coincides with the M-B distribution
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(dashed line): none of the quantum states are fully occupied (ne(p) < nmax(p) for all values of p) and
the electrons behave like classical particles. As the temperature is decreased, e.g. at T = 2 × 106 K
(red lines), the peak in the M-B distribution shifts to smaller p and is higher (since the integral over
the distribution must equal ne). The number of electrons with small values of p expected from clas-
sical physics, nMB(p), then exceeds the maximum allowed by the Pauli exclusion principle, nmax(p).
These electrons are forced to assume quantum states with higher p: the peak in the distribution ne(p)
occurs at higher p. Due to the higher momenta and velocities of these electrons, the electron gas
exerts a higher pressure than inferred from classical physics. This is called degeneracy pressure. If
the temperature is decreased even more, e.g. at T = 2 × 105 K (blue lines), the lowest momentum
states become nearly all filled and ne(p) follows nmax(p) until it drops sharply. In this state of strong
degeneracy, further decrease of T hardly changes the momentum distribution, so that the electron
pressure becomes nearly independent of temperature.

Complete electron degeneracy

In the limit that T → 0, all available momentum states are occupied up to a maximum value, while
all higher states are empty, as illustrated in the right panel of Fig. 3.2. This is known as complete
degeneracy, and the maximum momentum is called the Fermi momentum pF. Then we have

ne(p) =
8πp2

h3 for p ≤ pF, (3.31)

ne(p) = 0 for p > pF. (3.32)

The Fermi momentum is determined by the electron density through eq. (3.2), i.e.
∫ pF

0 ne(p) dp = ne,
which yields

pF = h
( 3
8π
ne

)1/3
. (3.33)

The pressure of a completely degenerate electron gas is now easy to compute using the pressure
integral eq. (3.4). It depends on whether the electrons are relativistic or not. In the non-relativistic
limit we have v = p/m and hence

Pe =
1
3

∫ pF

0

8πp4

h3me
dp =

8π
15h3me

pF
5 =

h2

20me

(

3
π

)2/3

ne
5/3. (3.34)

Using eq. (3.18) for ne this can be written as

Pe = KNR

(

ρ

µe

)5/3

with KNR =
h2

20me m5/3
u

(

3
π

)2/3

= 1.0036 × 1013 [cgs]. (3.35)

As more electrons are squeezed into the same volume, they have to occupy states with larger mo-
menta, as illustrated in Fig. 3.2. Therefore the electron pressure increases with density, as expressed
by eq. (3.35).

If the electron density is increased further, at some point the velocity of the most energetic elec-
trons, pF/me, approaches the speed of light. We then have to replace v = p/m by the relativistic
kinematics relation (3.10). In the extremely relativistic limit when the majority of electrons move at
relativistic speeds, we can take v = c and

Pe =
1
3

∫ pF

0

8πcp3

h3 dp =
8πc
12h3 p

4
F =

hc
8

(

3
π

)1/3

ne
4/3, (3.36)
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Figure 3.3. The equation of state for completely
degenerate electrons. The slope of the log P-log ρ
relation changes from 5/3 at relatively low densi-
ties, where the electrons are non-relativistic, to 4/3
at high density when the electrons are extremely
relativistic. The transition is smooth, but takes
place at densities around ρtr ≈ 106µe g cm−3.

which gives

Pe = KER

(

ρ

µe

)4/3

with KER =
hc

8m4/3
u

(

3
π

)1/3

= 1.2435 × 1015 [cgs]. (3.37)

In the ER limit the pressure still increases with density, but with a smaller exponent ( 4
3 instead of 5

3 ).
The transition between the NR regime, eq. (3.35), and the ER regime, eq. (3.37), is smooth and can
be expressed as a function of x = pF/mec, see Maeder Sec. 7.7. Roughly, the transition occurs at a
density ρtr given by the condition pF ≈ mec, which can be expressed as

ρtr ≈ µe mu
8π
3

(

mec
h

)3

. (3.38)

The relation between Pe and ρ for a completely degenerate electron gas is shown in Fig. 3.3.

Partial degeneracy

Although the situation of complete degeneracy is only achieved at T = 0, it is a very good approxi-
mation whenever the degeneracy is strong, i.e. when the temperature is sufficiently low, as illustrated
by Fig. 3.2. It corresponds to the situation when the degeneracy parameter ψ ≫ 0 in eq. (3.29). In
that case eqs. (3.35) and (3.37) can still be used to calculate the pressure to good approximation.

The transition between the classical ideal gas situation and a state of strong degeneracy occurs
smoothly, and is known as partial degeneracy. To calculate the pressure the full expression eq. (3.29)
has to be used in the pressure integral, which becomes rather complicated. The integral then depends
on ψ, and can be expressed as one of the so-called Fermi-Dirac integrals, see Maeder Sec. 7.7 for
details (the other Fermi-Dirac integral relates to the internal energy density U). The situation of
partial degeneracy corresponds to ψ ∼ 0.

When ψ ≪ 0 the classical description is recovered, i.e. eq. (3.29) becomes the Maxwell-Boltzmann
distribution. In that case 1/(e(p2/2mekT )−ψ + 1) = e−(p2/2mekT )+ψ and therefore

2
h3 e

ψ =
ne

(2πmekT )3/2 or ψ = ln
h3ne

2(2πmekT )3/2 .
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This only holds for ψ ≪ 0, but more generally it can be shown that ψ = ψ(ne/T 2/3). We have to
consider (partial) degeneracy if ψ ∼> 0, i.e. if

ne ∼>
2(2πmekT )3/2

h3 . (3.39)

The limit of strong (almost complete) degeneracy is reached when ne is roughly a factor 10 higher.

Importance of electron degeneracy in stars

As a star, or its core, contracts the density may become so high that the electrons become degenerate
and exert a (much) higher pressure than they would if they behaved classically. Since in the limit of
strong degeneracy the pressure no longer depends on the temperature, this degeneracy pressure can
hold the star up against gravity, regardless of the temperature. Therefore a degenerate star does not
have to be hot to be in hydrostatic equilibrium, and it can remain in this state forever even when it
cools down. This is the situation in white dwarfs.

The importance of relativity is that, when a degenerate star becomes more compact and the density
increases further, the pressure increases less steeply with density. This has important consequences
for massive white dwarfs, and we shall see that it implies that there is a maximum mass for which
white dwarfs can exist (the Chandrasekhar mass).

We note that although electron degeneracy can be (very) important in stars, degeneracy of the ions
is not. Since the ions have masses ∼> 2000 larger than electrons, their momenta (p =

√
2mϵ) are much

larger at energy equipartition, and the condition (3.39) above (with me replaced by mion) implies
that much higher densities are required at a particular temperature. In practice this never occurs:
before such densities are reached the protons in the atomic nuclei will capture free electrons, and
the composition becomes one of (mostly) neutrons. Degeneracy of neutrons does become important
when we consider neutron stars.

3.3.6 Radiation pressure

Photons can be treated as quantum-mechanical particles that carry momentum and therefore exert
pressure when they interact with matter. In particular photons are bosonswith gs = 2 (two polarization
states), so they can be described by the Bose-Einstein statistics, eq. (3.27). The number of photons is
not conserved, they can be destroyed and created until thermodynamic equilibrium is achieved. This
means that µ = 0 in eq. (3.27) and hence

n(p) dp =
2
h3

1
eϵp/kT − 1

4πp2 dp (3.40)

Photons are completely relativistic with ϵp = pc = hν, so in terms of frequency ν their distribution in
LTE becomes the Planck function for blackbody radiation:

n(ν) dν =
8π
c3

ν2 dν
ehν/kT − 1

(3.41)

Applying eqs. (3.2) and (3.3) one can show that the photon number density and the energy density of
radiation are

nph =

∫ ∞

0
n(p) dp = b T 3 (3.42)

Urad =

∫ ∞

0
pc n(p) dp = a T 4 (3.43)
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where b = 20.3 cm−3 K−3 and a is the radiation constant

a =
8π5k4

15h3c3 = 7.56 × 10−15 erg cm−3 K−4.

Since photons are always extremely relativistic, P = 1
3U by eq. (3.12) and the radiation pressure is

given by

Prad =
1
3aT

4 (3.44)

Pressure of a mixture of gas and radiation

The pressure inside a star is the sum of the gas pressure and radiation pressure,

P = Prad + Pgas = Prad + Pion + Pe.

where Prad is given by eq. (3.44) and Pion by eq. (3.17). In general Pe must be calculated as described
in Sect. 3.3.5. In the classical limit it is given by eq. (3.19), and in the limits of non-relativistic and
extremely relativistic degeneracy by eqs. (3.35) and (3.37), respectively. If the electrons are non-
degenerate then the pressure can be written as

P = 1
3aT

4 +
R
µ
ρT. (3.45)

If the electrons are strongly degenerate their pressure dominates over that of the (classical) ions, so in
that case Pion can be neglected in the total pressure.

The fraction of the pressure contributed by the gas is customarily expressed as β, i.e.

Pgas = β P and Prad = (1 − β) P. (3.46)

3.3.7 Equation of state regimes

The different sources of pressure we have discussed so far dominate the equation of state at different
temperatures and densities. In Fig. 3.4 the boundaries between these regimes are plotted schematically
in the logT , log ρ plane.

• The boundary between regions where radiation and ideal-gas pressure dominate is defined by
Prad = Pgas, giving T/ρ1/3 = 3.2 × 107µ−1/3 when T and ρ are expressed in cgs units. (Verify
this by comparing eqs. 3.21 and 3.44.) This is a line with slope 1

3 in the logT vs log ρ plane.

• Similarly, the boundary between the regions dominated by ideal-gas pressure and non-relativistic
degenerate electron pressure can be defined by Pgas,ideal = Pe,NR as given by eq. (3.35), giving
T/ρ2/3 = 1.21 × 105µ µ−5/3

e (again with T and ρ in cgs units). This is a line with slope 2
3 in the

logT -log ρ plane.

• The approximate boundary between non-relativistic and relativistic degeneracy is given by
eq. (3.38), ρ = 9.7 × 105µe g/cm3.

• At high densities the boundary between ideal gas pressure and extremely relativistic degeneracy
is found by equating eqs. (3.21) and (3.37), giving T/ρ1/3 = 1.50× 107µ µ−4/3

e (with T and ρ in
cgs units), again a line with slope 1

3 .

As shown in Fig. 3.4, detailed models of zero-age (that is, homogeneous) main-sequence stars with
masses between 0.1 and 100 M⊙ cover the region where ideal-gas pressure dominates the equation
of state. This justifies the assumptions made in Ch. 2 when discussing the virial theorem and its
consequences for stars, and when estimating temperatures in the stellar interior.
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Figure 3.4. Left: The equation of state for a gas of free particles in the logT , log ρ plane. The dashed lines are
approximate boundaries between regions where radiation pressure, ideal gas pressure, non-relativistic electron
degeneracy and extremely relativistic electron degeneracy dominate, for a composition X = 0.7 and Z = 0.02.
Right: Detailed structure models for homogeneous main-sequence stars of 0.1...100 M⊙ have been added (solid
lines). The 1 M⊙ model is well within the ideal-gas region of the equation of state. In the 0.1 M⊙ star electron
degeneracy pressure is important, except in the outer layers (at low ρ and T ). In stars more massive than 10 M⊙,
radiation pressure becomes important, and it dominates in the surface layers of the 100 M⊙ model.

3.4 Adiabatic processes

It is often important to consider processes that occur on such a short (e.g. hydrodynamical) timescale
that there is no heat exchange with the environment; such processes are adiabatic. To derive the
properties of stellar interiors under adiabatic conditions we need several thermodynamic derivatives.
We therefore start from the laws of thermodynamics.

The first law of thermodynamics states that the amount of heat absorbed by a system (δQ) is the
sum of the change in its internal energy (δU) and the work done on the system (δW = PδV). The
second law of thermodynamics states that, for a reversible process, the change in entropy equals the
change in the heat content divided by the temperature. Entropy is a state variable, unlike the heat
content. For a unit mass (1 gram) of matter the combination of these laws can be expressed as

dq = T ds = du + P dv = du −
P
ρ2 dρ. (3.47)

Here dq is the change in heat content, du is the change in internal energy (u = U/ρ is the specific
internal energy, i.e. per gram), s is the specific entropy (i.e. the entropy per unit mass) and v = 1/ρ is
the volume of a unit mass. Note that du and ds are exact differentials, whereas dq is not.

Differential form of the equation of state To compute general expressions for thermodynamic
derivatives such as the specific heats and the adiabatic derivatives it is useful to write the equation of
state in differential form, i.e.

dP
P
= χT

dT
T
+ χρ

dρ
ρ
, (3.48)
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where χT and χρ are defined as

χT =

(

∂ log P
∂ logT

)

ρ,Xi
=
T
P

(

∂P
∂T

)

ρ,Xi
, (3.49)

χρ =

(

∂ log P
∂ log ρ

)

T,Xi
=
ρ

P

(

∂P
∂ρ

)

T,Xi
. (3.50)

The subscript Xi means that the composition is held constant as well. In a general equation of state
χT and χρ can depend on T and ρ themselves, but if they are (approximately) constant then we can
write the equation of state in power-law form:

P = P0 ρ
χρ TχT .

For example, for an ideal gas without radiation we have χT = χρ = 1, while for a radiation-dominated
gas χT = 4 and χρ = 0.

3.4.1 Specific heats

The specific heats at constant volume cV and at constant pressure cP for a unit mass of gas follow
from eq. (3.47):

cV =
(

dq
dT

)

v
=

(

∂u
∂T

)

v
, (3.51)

cP =
(

dq
dT

)

P
=

(

∂u
∂T

)

P
−
P
ρ2

(

∂ρ

∂T

)

P
, (3.52)

where a partial derivative taken at constant v is the same as one taken at constant ρ. For an ideal gas,
with u = U/ρ = 3

2P/ρ, we obtain from eq. (3.21) the familiar result cV = 3
2R/µ. For a radiation-

dominated gas, eq. (3.43) yields cV = 4aT 3/ρ. Using thermodynamic transformations and some
algebraic manipulation (see Appendix 3.A), it follows quite generally that the specific heats are related
by

cP − cV =
P
ρT

χT
2

χρ
. (3.53)

For an ideal gas this amounts to cP − cV = R/µ, and therefore cP = 5
2R/µ. For a radiation-dominated

gas χρ = 0 and hence cP → ∞: indeed, since Prad only depends on T , a change in temperature cannot
be performed at constant pressure.

The ratio of specific heats is denoted as γ:

γ =
cP
cV
= 1 +

P
ρTcV

χT
2

χρ
, (3.54)

so that γ = 5
3 for an ideal gas.

Expressions for dq It is often useful to have expressions for the change in heat content dq (eq. 3.47)
in terms of variations of T and ρ or T and P. Making use of the specific heats one can derive (see
Appendix 3.A)

dq = T ds = cV dT − χT
P
ρ2 dρ = cP dT −

χT

χρ

dP
ρ
. (3.55)
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3.4.2 Adiabatic derivatives

The thermodynamic response of a system to adiabatic changes is measured by the so-called adiabatic
derivatives. Two of these have special importance for stellar structure:

• The adiabatic exponent2 γad measures the response of the pressure to adiabatic compression or
expansion, i.e. to a change in the density. It is defined as

γad =

(

∂ log P
∂ log ρ

)

ad
(3.56)

where the subscript ’ad’ means that the change is performed adiabatically, that is, at constant
entropy. If γad is constant then P ∝ ργad for adiabatic changes. As we shall see later, γad is
related to the dynamical stability of stars.

• The adiabatic temperature gradient is defined as

∇ad =

(

∂ logT
∂ log P

)

ad
(3.57)

It is in fact another exponent that describes the behaviour of the temperature under adiabatic
compression or expansion (T ∝ P∇ad if ∇ad is constant), which turns out to be important for
stability against convection.

The adiabatic exponent For an adiabatic process dq = 0 in eq. (3.47) and therefore

du =
P
ρ2 dρ. (3.58)

We have seen in Sect. 3.3.1 that for a perfect gas of free particles the internal energy density U is
proportional to P, in both the NR and ER limits. For such a simple system we can therefore write, as
we did in Sect. 2.3,

u = φ
P
ρ

(3.59)

with φ a constant (between 3
2 and 3). If we differentiate this and substitute into eq. (3.58) we obtain

for an adiabatic change

dP
P
=
φ + 1
φ

dρ
ρ
. (3.60)

Therefore, according to the definition of γad (eq. 3.56),

γad =
φ + 1
φ

(for a simple, perfect gas). (3.61)

2In many textbooks one finds instead the adiabatic exponents Γ1, Γ2, and Γ3 introduced by Chandrasekhar. They are
defined, and related to γad and ∇ad, as follows:

Γ1 =

(

∂ log P
∂ log ρ

)

ad
= γad,

Γ2

Γ2 − 1
=

(

∂ log P
∂ logT

)

ad
=

1
∇ad
, Γ3 =

(

∂ log T
∂ log ρ

)

ad
+ 1.

They obey the relation

Γ1

Γ3 − 1
=
Γ2

Γ2 − 1
.
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• for non-relativistic particles (e.g. a classical ideal gas, NR degenerate electrons) φ = 3
2 and

therefore γad =
5
3

• for extremely relativistic particles (e.g. photons, ER degenerate electrons) φ = 3 and therefore
γad =

4
3

• for a mixture of gas and radiation (0 ≤ β ≤ 1) and/or moderately relativistic degenerate elec-
trons, 4

3 ≤ γad ≤ 5
3

For a general equation of state, described by eq. (3.48), one can derive (see Appendix 3.A)

γad = χρ +
P

ρTcV
χT

2. (3.62)

Therefore γad is related to the ratio of specific heats (eq. 3.54), γad = γ χρ. The γ’s are equal if χρ = 1
(as in the case of an ideal gas).

The adiabatic temperature gradient By writing eq. (3.56) as dP/P = γad dρ/ρ for an adiabatic
change, and eliminating dρ with the help of eq. (3.48), we obtain a general relation between the
adiabatic temperature gradient ∇ad and the adiabatic exponent γad:

∇ad =
γad − χρ
γad χT

, (3.63)

This gives the following limiting cases:

• for an ideal gas without radiation (β = 1) we have χT = χρ = 1, which together with γad =
5
3

gives ∇ad =
2
5 = 0.4.

• for a radiation-dominated gas (β = 0) χT = 4 and χρ = 0 so that ∇ad =
1
4 = 0.25.

For a general equation of state one has to consider the general expression for γad (eq. 3.62) in
eq. (3.63). From the expression of dq in terms of dT and dP (3.55) it follows that

∇ad =
P

ρTcP
χT

χρ
. (3.64)

This means that for a general non-adiabatic process we can write eq. (3.55) as

dq = cP
(

dT − ∇ad
T
P

dP
)

, (3.65)

which will prove to be a useful relation later on.

We give some important results without derivations, which can be found in K&W Chapters 13.2
and 16.3 or in Hansen Chapter 3.7:

• for a mixture of gas and radiation with 0 < β < 1, ∇ad and γad both depend on β and take on
intermediate values, i.e. 0.25 < ∇ad < 0.4.

• for a non-relativistic degenerate gas, we have to consider that although electrons dominate the
pressure, there is a (tiny) temperature dependence due to the ion gas which must be taken into
account in calculating χT and therefore ∇ad. After some manipulation it can be shown that in
this case ∇ad = 0.4, as for the ideal classical gas.

• for an extremely relativistic degenerate gas one also has to consider that while the electrons are
relativistic, the ions are still non-relativistic. It turns out that in this limit ∇ad = 0.5.
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3.5 Ionization

We have so far implicitly assumed complete ionization of the gas, i.e. that it consists of bare atomic
nuclei and free electrons. This is a good approximation in hot stellar interiors, where T > 106 K
so that typical energies kT are much larger than the energy needed to ionize an atom, i.e. to knock
off a bound electron. In the cooler outer layers of a star, however, we need to consider the partial
ionization of the elements. In this case quasi-static changes of the state variables (ρ and T ) will lead
to changes in the degree of ionization. This can have a large effect on the thermodynamic properties
of the gas, e.g. on γad and ∇ad.

In LTE the number densities of ionized and neutral species are determined by the Saha equation

nr+1

nr
ne =

ur+1

ur
2(2πmekT )3/2

h3 e−χr/kT (3.66)

where nr and nr+1 indicate the number densities of r and r+1 times ionized nuclei, χr is the ionization
potential, i.e. the energy required to remove the r-th bound electron, and ur and ur+1 are the partition
functions. The partition functions depend on T but can in most cases be approximated by the statistical
weights of the ground states of the bound species. (This equation can be derived from statistical
mechanics, e.g. see K&W Chapter 14.1.)

3.5.1 Ionization of hydrogen

As an example, we consider the simple case where the gas consists only of hydrogen. Then there
are just three types of particle, electrons and neutral and ionized hydrogen, with uH = u0 = 2 and
uH+ = u1 = 1. We write their number densities as n+ and n0 so that

n+
n0
ne =

(2πmekT )3/2

h3 e−χH/kT (3.67)

where χH = 13.6 eV. The gas pressure is given by Pgas = (n0 + n+ + ne) kT and the density is
ρ = (n0 + n+)mu. The degree of ionization is defined as

x =
n+

n0 + n+
(3.68)

so that Pgas can be written in terms of the degree of ionization

Pgas = (1 + x)RρT (3.69)

We can then rewrite Saha’s equation as

x2

1 − x2 =
(2πme)3/2

h3
(kT )5/2

Pgas
e−χH/kT (3.70)

We see that the degree of ionization increases with T , as expected since more atoms are broken up by
the energetic photons. However, x decreases with gas pressure (or density) when T is kept constant,
because this increases the probability of recombination which is proportional to ne. From eq. (3.69)
we see that the mean molecular weight µ = 1/(1 + x) decreases as hydrogen becomes ionized (one
atomic mass is divided over two particles).

To estimate the effect on the thermodynamic properties of the gas, we note that in the case of par-
tial ionization the internal energy has a contribution from the available potential energy of recombina-
tion. Per unit volume this contribution is equal to n+ χH, so per unit mass it equals n+ χH/ρ = x χH/mu.
Thus

u =
3
2
Pgas

ρ
+ x

χH

mu
= 3

2 (1 + x)RT + x
χH

mu
. (3.71)
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Figure 3.5. The adiabatic temperature gradient ∇ad plotted against temperature. The left panel shows the
effect of partial ionization for the simple case of a pure hydrogen gas, for three values of the density (10−4,
10−6 and 10−8 g/cm3). When hydrogen is partially ionized, ∇ad is decreased below its ideal-gas value of 0.4.
The circles indicate the points where the degree of ionization x = 0.5, close to the minimum of ∇ad. As the
density increases, a higher temperature is needed to reach the same ionization degree. The right panel shows
how ∇ad varies with temperature in a detailed stellar model of 1 M⊙, between the surface (at T ≈ 6000 K) and
the centre (at T ≈ 1.5 × 107 K). Apart from the hydrogen ionization zone around 104 K, a second depression
of ∇ad around 105 K is seen which is due to the first 4He ionization zone. The second He ionization zone is
merged with H ionization because it occurs at similar temperatures and densities. Note that the region where
T < 106 K comprises only the outer 1 % of the mass of the Sun. (The dotted line shows how ∇ad would vary
with T in this model if the composition were pure hydrogen, as was assumed in the left panel.)

A small increase in temperature increases the degree of ionization, which results in a large amount of
energy being absorbed by the gas. In other words, the specific heat of a partially ionized gas will be
much larger than for an unionized gas, or for a completely ionized gas (in the latter case x = 1 so that
the second term in eq. (3.71) becomes a constant and therefore irrelevant).

Now consider what happens if the gas is adiabatically compressed. Starting from neutral hydro-
gen, for which ∇ad = 0.4, the temperature initially increases as T ∝ P0.4. Further compression (work
done on the gas) increases u, but when partial ionization sets in most of this energy goes into raising
the degree of ionization (second term of eq. 3.71) and only little into raising the temperature (first
term). In other words, T increases less strongly with with P, and therefore ∇ad < 0.4. A detailed
calculation (e.g. see K&W Chapter 14.3) shows that under typical conditions ∇ad reaches a minimum
value of ≈ 0.1 when x ≈ 0.5. As the gas becomes almost fully ionized, ∇ad rises back to 0.4. The
variation of ∇ad with temperature for a pure hydrogen gas is shown in the left panel of Fig. 3.5 for
different values of the density.

The decrease of ∇ad in partial ionization zones can induce convection in the outer layers of stars,
as we shall see in Ch. 5. Similarly it can be shown that γad decreases in partial ionization zones, from
5
3 to γad ≈ 1.2 when x ≈ 0.5. This has consequences for the stability of stars, as we shall also see.
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Figure 3.6. Schematic depiction of
the electrostatic potential of an iso-
lated ion (left) and the superposi-
tion of the potentials of neighbour-
ing ions (right). Figure reproduced
from Kippenhanhn & Weigert.

3.5.2 Ionization of a mixture of gases

In a mixture of gases the situation becomes more complicated because many, partly ionized species
have to be considered, the densities of which all depend on each other (see e.g. K&W Chapter 14.4-
14.5). However the basic physics remains the same as considered above for the simple case of pure
hydrogen. The effect on the thermodynamic properties is that e.g. ∇ad can show additional deviations
below 0.4 at different temperatures, especially where helium (the second-most abundant element in
stars) is partially ionized. This is illustrated in Fig. 3.5b which shows the variation of ∇ad with
temperature in a homogeneous model for the initial Sun.

3.5.3 Pressure ionization

As ρ increases indefinitely, the Saha equation gives x→ 0, i.e. ionized gas recombines to form atoms.
This is obviously nonsense at very high density, and becomes incorrect when the average distance d
between ions becomes less than an atomic radius. In this situation the ionization energy is suppressed
(there are fewer bound excited states; see Fig. 3.6), a situation known as pressure ionization.

Consider the case of hydrogen: the volume per H atom is 1/nH so that d = ( 4π
3 nH)−1/3. Pressure

ionization sets in when d ∼< a0 = 5 × 10−9 cm (the Bohr radius). This implies

nH ∼>
1

4π
3 a03

or ρ = nHmH ∼> 3 g cm−3. Other elements are pressure-ionized at similar values of the density, within
an order of magnitude. At densities ∼> 10 g cm−3, therefore, we can again assume complete ionization.

Fig. 3.7 shows the approximate boundary in the density-temperature diagram between neutral and
ionized hydrogen according the Saha equation for ρ < 1 g cm−3, and as a result of pressure ionization
at higher densities.

3.6 Other effects on the equation of state

3.6.1 Coulomb interactions and crystallization

We have so far ignored the effect of electrostatic or Coulomb interactions between the ions and elec-
trons in the gas. Is this a reasonable approximation, i.e. are the interaction energies indeed small
compared to the kinetic energies, as we have assumed in Sect. 3.3?

The average distance between gas particles (with mass Amu) is d ≈ ( 4π
3 n)−1/3 where n is the

number density, n = ρ/(Amu). The typical Coulomb energy per particle (with charge Ze) is ϵC ≈
Z2e2/d, while the average kinetic energy is ϵkin =

3
2kT . The ratio of Coulomb energy to kinetic

energy is usually called the Coulomb parameter ΓC, defined as

ΓC =
Z2e2

d kT
=
Z2e2

kT

(

4πρ
3Amu

)1/3

= 2.275 × 105 Z2

A1/3
ρ1/3

T
, (3.72)
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Figure 3.7. The equation of state in the
ρ, T plane for a pure hydrogen gas. The
dotted lines are the borders, also shown
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line shows where the ionization fraction
of hydrogen is 0.5 according to the Saha
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which the ions form a crystralline lat-
tice. Above the dash-dotted line e+e−
pairs play an important role in stellar in-
teriors.

where in the last equality the numerical factor is in cgs units. We see that Coulomb interactions
increase in importance at high densities or low temperatures. Roughly, Coulomb interactions start to
become important in stellar interiors when ΓC ∼> 1.

To estimate the typical value of ΓC in stellar interiors we approximate ρ ≈ ρ̄ = M/( 4π
3 R

3), and
we approximate T by the average temperature estimated from the virial theorem, T ≈ T̄ ≈ 1

3
Amu
k

GM
R

(eq. 2.29). Ignoring factors of order unity, we get

ΓC ≈ 0.01
Z2

A4/3

(

M
M⊙

)−2/3

. (3.73)

The ratio Z2/A4/3 depends on the composition, and represents an average over the constituents of
the gas. In stars mostly composed of hydrogen, A ≈ 1 and Z ≈ 1, and we find that in the Sun the
Coulomb energy contributes of the order of 1 % to the particle energies (and hence has a similar effect
on the pressure). We are therefore justified in ignoring Coulomb interactions in stars similar to or
more massive than the Sun. However, eq. (3.73) shows that in low-mass stars Coulomb interactions
can start to contribute significantly. This can also be seen by comparing Fig. 3.4 and Fig. 3.7, where
the location of the condition ΓC = 1 is indicated in the ρ-T diagram. Detailed models of low-mass
stars need to take this effect into account. For M ∼< 10−3 M⊙ the Coulomb energies dominate. Such
objects are not stars but planets (Jupiter’s mass is about 10−3 M⊙). Calculations of the structure of
planets requires a much more complicated equation of state than for stars.

Crystallization

If ΓC ≫ 1 the thermal motions of the ions are overwhelmed by the Coulomb interactions. In this
situation the ions will tend to settle down into a conglomerate with a lower energy, in other words
they will form a crystalline lattice. Detailed estimates indicate that this transition takes place at a
critical value of ΓC ≈ 170. This condition is also indicated in Fig. 3.4 for a pure hydrogen gas. In
reality, this situation will never occur in hydrogen-rich stellar interiors, but it can take place in cooling
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white dwarfs (in which the temperature gradually decreases with time while the density remains
constant). White dwarfs are usually composed of carbon and oxygen, so in this case we have to
take into account the composition which raises the temperature at which the transition occurs (the
‘melting’ temperature) by a factor Z2/A1/3 according to eq. (3.72).

Finally we note that crystallization only occurs in the region where the electrons are strongly
degenerate. You may verify that the Coulomb interaction energy between electrons and ions (Ze2/d)
is always smaller than the typical electron energy (p2

F/2me). The electrons therefore behave as a free
degenerate gas, even if the ions form a crystalline structure.

3.6.2 Pair production

A very different process can take place at very high temperatures and relatively low densities. A
photon may turn into an electron-positron pair if its energy hν exceeds the rest-mass energy of the pair,
hν > 2mec2. This must take place during the interaction with a nucleus, since otherwise momentum
and energy cannot both be conserved. Pair production takes place at a typical temperature kT ≈ hν ≈
2mec2, or T ≈ 1.2 × 1010 K. However, even at T ∼ 109 K the number of energetic photons in the tail
of the Planck distribution (eq. 3.41) is large enough to produce a large number of e+e− pairs. The
newly created positrons tend to be annihilated quickly by the inverse reaction (e+ + e− → 2γ), as a
result of which the number of positrons reaches equilibrium. At a few times 109 K, depending on the
electron density, the number of positrons is a significant fraction of the number of electrons.

Pair production is similar to an ionization process: an increase in temperature leads to an increase
in the number of particles at the expense of the photon energy (and pressure). Therefore pair produc-
tion gives rise to a decrease of the adiabatic gradient γad and of ∇ad, similar to partial ionization. This
is the main importance of pair production for stellar evolution: it affects the stability of very massive
stars in advanced stages of evolution (when their temperature may reach values in excess of 109 K)
and can trigger their collapse.

Suggestions for further reading

The contents of this chapter are also covered by Chapter 7 of Maeder and by Chapters 13 to 16 of
Kippenhahn & Weigert. However, a more elegant derivation of the equation of state, which is also
more consistent with the way it is derived in these lecture notes, is given in Chapter 3 of Hansen,
Kawaler& Trimble. Explicit expressions for many of the results that are only mentioned here can be
found in this book.

Exercises

3.1 Conceptual questions
These questions are intended to test your understanding of the lectures. Try to answer them without
referring to the lecture notes.

(a) What do we mean by local thermodynamic equilibrium (LTE)? Why is this a good assumption
for stellar interiors? What is the difference between LTE and thermal equilibrium (as treated in
Ch. 2)?

(b) In what type of stars does degeneracy become important? Is it important in main-sequence stars?
Is it more important in high mass or low mass MS stars?
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(c) Explain qualitatively why for degenerate matter, the pressure increases with the density.

(d) Why do electrons become relativistic when they are compressed into a smaller volume? Why does
the pressure increase less steeply with the density in this case?

(e) In the central region of a star we find free electrons and ions. Why do the electrons become
degenerate first? Why do the ions never become degenerate in practice?

3.2 Mean molecular weight

Derive a general expression for the mean molecular weight of an ionized gas, as a function of composi-
tion X, Y , Z. Assume that, for elements heavier than H, nuclei are composed of equal number of protons
and neutrons, so that the nuclear charge Zi is half of the mass number Ai.

3.3 The ρ − T plane

Consider a gas of ionized hydrogen. In the ρ−T plane compute the approximate boundary lines between
the regions where:

(a) radiation pressure dominates,

(b) the electrons behave like a classical ideal gas,

(c) the electrons behave like a degenerate gas,

(d) the electrons are relativistically degenerate.

3.4 The pressure of a gas of free particles

In this exercise you will derive some important relations from this chapter for yourself.

(a) Suppose that the particles in a gas have momenta distributed as n(p) dp. Show that the pressure
can be expressed by eq. (3.4).

(b) For classical particles in LTE, the momentum distribution is given by the Maxwell-Boltzmann
distribution, eq. (3.13). Calculate the pressure using eq. (3.4). Does the result look familiar?

(c) Show that for a gas of free, non-relativistic particles P = 2
3U (eq. 3.11), where U is the internal

energy density. Show that in the extremely relativistic limit P = 1
3U (eq. 3.12).

(d) Electrons are fermions with 2 spin states. Explain why the maximum number of electrons per
volume with momentum p can be written as eq. (3.28).

(e) In the extreme case of complete degeneracy, T → 0, the electrons fill up all available quantum
states up to a maximum pF, the Fermi momentum. Show that

pF = h
(

3ne

8π

)
1
3

(f) Show that the pressure as function of the density for a non-relativistic degenerate electron gas can
be written as

P = KNR

(

ρ

µe

)x

and derive an expression for KNR and x.

(g) Show that the pressure as function of the density for an extremely relativistic degenerate electron
gas can be written as

P = KER

(

ρ

µe

)y

and derive an expression for KER and y.
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(h) Photons are bosons, and the distribution of their momenta is given by the Planck function (eq. 3.27).
Show that in this case

U ∝ T 4

(Hint: to derive an expression for the proportionality constant a, you might want to use Mathe-
matica or a list of standard integrals.)

(i) Now use (c) to show that the radiation pressure is given by Prad =
1
3aT

4.

3.5 Adiabatic derivatives

(a) Use the first law of thermodynamics to show that, for an ideal gas in an adiabatic process,

P ∝ ργad (3.74)

and give a value for the adiabatic exponent γad.
(b) Use the ideal gas law in combination with eq. (3.74) to show that

∇ad =

(

d ln T
d ln P

)

ad,id
= 0.4.

(c) The quantity ∇ad is referred to as the adiabatic temperature gradient. Normally you would use
the term ‘gradient of a quantity A’ for dA/dr, or if you use mass coordinates instead of radius
coordinates, dX/dm. Do you understand why ∇ad can be referred to as a temperature ‘gradient’?

(d) (*) Show that for a mixture of an ideal gas plus radiation, the adiabatic exponent is given by

γad =
32 − 24β − 3β2

24 − 21β
,

where β = Pgas/P.
(Hints: write down the equation of state for the mixture in differential form as in eq. (3.48), and
express χT and χρ in terms of β. Then apply the first law of therrmodynamics for an adiabatic
process.)

(e) (*) What is the value of γad in the limit where radiation dominates and where pressure dominates?
Does this look familiar?

3.6 Ionization effects

(a) The particles in an ionized gas are charged and therefore undergo electrostatic (Coulomb) inter-
actions. Why can can we nevertheless make the ideal-gas assumption in most stars (i.e. that the
internal energy of the gas is just the sum of the kinetic energies of the particles)? For which stars
do Coulomb interactions have a significant effect?

(b) Why does the gas in the interior of a star become pressure-ionized at high densities?
(c) Explain qualitatively why partial ionization leads to ∇ad < ∇ad,ideal = 0.4, in other words: why

does adiabatic compression lead to a smaller temperature increase when the gas is partly ionized,
compared to a completely ionized (or unionized) gas?
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3.A Appendix: Themodynamic relations
In this Appendix we derive some of the thermodynamic relations that were given without proof in Chapter 3.

The first law of thermodynamics states that the heat added to a mass element of gas is the sum of the change
in its internal energy and the work done by the mass element. Taking the element to be of unit mass, we can
wite this as

dq = du + P dv = du −
P
ρ2 dρ, (3.75)

because the volume of a unit mass is v = 1/ρ. We can write the change in the internal energy of a unit mass in
terms of the changes in the state variables (T and ρ) as

du =
⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂u
∂T

⎞

⎟

⎟

⎟

⎟

⎟

⎠

ρ

dT +
⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂u
∂ρ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

T

dρ. (3.76)

The change in the entropy per unit mass, ds = dq/T , is therefore

ds =
dq
T
=

1
T

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂u
∂T
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⎟

⎟

⎠

ρ

dT +
1
T
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⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂u
∂ρ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

T

−
P
ρ2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

dρ. (3.77)

Because s is a function of state, ∂2s/∂ρ∂T = ∂2s/∂T∂ρ, which means that

1
T

∂2u
∂T∂ρ

=
∂

∂T

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
T

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂u
∂ρ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

T

−
P
ρ2T

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (3.78)

where the ∂/∂T on the right-hand side should be taken at constant ρ. Working out the right-hand side allows us
to eliminate the second derivative of u, giving

1
T 2

⎛
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⎜

⎜

⎝

∂u
∂ρ

⎞
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⎠

T

=
P

ρ2T 2 −
1
ρ2T
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⎜

⎜

⎝

∂P
∂T

⎞

⎟
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⎟

⎟

⎟

⎠

ρ

.

With the definition of χT (eq. 3.49) we can write (∂P/∂T )ρ = χT P/T , and thus
⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂u
∂ρ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

T

= (1 − χT )
P
ρ2 . (3.79)

Specific heats

The definitions of the specfic heats at constant volume and at constant pressure are

cV ≡
⎛
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⎝
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, (3.80)

cP ≡
⎛
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. (3.81)

To work out an expression for cP, we need (∂u/∂T )P and (∂ρ/∂T )P. To start with the latter, we use the differ-
ential form of the equation of state (3.48). At constant pressure dP = 0 this gives

χρ
dρ
ρ
= −χT

dT
T

⇒

⎛
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= −
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χρ
. (3.82)

To obtain an expression for (∂u/∂T )P we use eq. (3.76), which we can write as

du
dT
=
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dT
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and therefore
⎛
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. (3.83)

To obtain the last equality we used eqs. (3.79) and (3.82). From the definitions (3.80) and (3.81) we thus arrive
at the following relation between cP and cV :

cP − cV =
χT

2

χρ

P
ρT

(3.84)

which is eq. (3.53).

Expressions for dq

It is useful to be able to write the change in heat content of a unit mass in terms of the changes in the state
variables. Eq. (3.77) already shows how dq is written in terms of T and ρ, i.e.

dq = T ds = cV dT − χT
P
ρ2 dρ, (3.85)

making use of (3.79) and (3.80). It is often useful to express dq is terms of T and P, rather than ρ. To do this
we write dρ with the help of eq. (3.48),

dρ =
ρ

χρ

⎛
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, (3.86)

so that
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The terms with parentheses in the last equality are simple cP, according to (3.84), and therefore

dq = T ds = cP dT −
χT

χρ

dP
ρ
. (3.88)

Adiabatic derivatives

Eq. (3.88) makes it easy to derive an expression for the adiabatic temperature gradient (3.57),

∇ad ≡
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An adiabatic change in T and P means the changes take place at constant s, or with dq = 0. Hence (3.88)
shows that
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This means

∇ad =
P

ρTcP
χT

χρ
, (3.91)

which is eq. (3.64). With the help of this expression we can also write (3.88) as

dq = cP
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To derive an expression for the adiabatic exponent (3.56),

γad ≡

⎛
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, (3.93)

we use (3.85) and (3.88) and set dq = 0 in both expressions. This gives

dT =
P

ρ2cV
χT dρ and dT =

1
ρcP
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χρ
dP.

Eliminating dT from both expressions gives
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This means

γad =
cP
cV

χρ = γ χρ , (3.94)

where γ = cP/cV is the ratio of specific heats. Using eq. (3.84) this can also be written as

γad = χρ +
P

ρTcV
χT

2, (3.95)

which is eq. (3.62).
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Chapter 4

Polytropic stellar models

As mentioned in Sec. 2.2, the equation of hydrostatic equilibrium can be solved if the pressure is
a known function of the density, P = P(ρ). In this situation the mechanical structure of the star is
completely determined. A special case of such a relation between P and ρ is the polytropic relation,

P = Kργ (4.1)

where K and γ are both constants. The resulting stellar models are known as polytropic stellar models
or simply polytropes. Polytropic models have played an important role in the historical development
of stellar structure theory. Although nowadays their practical use has mostly been superseded by more
realistic stellar models, due to their simplicity polytropic models still give useful insight into several
important properties of stars. Moreover, in some cases the polytropic relation is a good approximation
to the real equation of state. We have encountered a few examples of polytropic equations of state
in Chapter 3, e.g. the pressure of degenerate electrons, and the case where pressure and density are
related adiabatically.

In this brief chapter – and the accompanying computer practicum – we will derive the analytic the-
ory of polytropes and construct polytropic models, and study to which kind of stars they correspond,
at least approximately.

4.1 Polytropes and the Lane-Emden equation

If the equation of state can be written in polytropic form, the equations for mass continuity (dm/dr,
eq. 2.3) and for hydrostatic equilibrium (dP/dr, eq. 2.12) can be combined with eq. (4.1) to give a
second-order differential equation for the density:

1
ρr2

d
dr

(

r2ργ−2 dρ
dr

)

= −
4πG
Kγ

(4.2)

The exponent γ is often replaced by the so-called polytropic index n, which is defined by

n =
1

γ − 1
or γ = 1 +

1
n

(4.3)

In order to construct a polytropic stellar model we have to solve eq. (4.2), together with two boundary
conditions which are set in the centre, r = 0:

ρ(0) = ρc and
(

dρ
dr

)

r=0
= 0, (4.4)

where ρc is a parameter to be chosen, or determined from other constraints.

46



Table 4.1. Numerical values for polytropic models with index n.

n zn Θn ρc/ρ̄ Nn Wn

0 2.44949 4.89898 1.00000 . . . 0.119366
1 3.14159 3.14159 3.28987 0.63662 0.392699
1.5 3.65375 2.71406 5.99071 0.42422 0.770140
2 4.35287 2.41105 11.40254 0.36475 1.638183
3 6.89685 2.01824 54.1825 0.36394 11.05068
4 14.97155 1.79723 622.408 0.47720 247.559
4.5 31.8365 1.73780 6189.47 0.65798 4921.84
5 ∞ 1.73205 ∞ ∞ ∞

In order to simplify eq. (4.2), we define two new dimensionless variables w (related to the density)
and z (related to the radius) by writing

ρ = ρcwn, (4.5)

r = αz, with α =

(

n + 1
4πG

Kρ1/n−1
c

)1/2
. (4.6)

This choice of α ensures that the constants K and 4πG are eliminated after substituting r and ρ into
eq. (4.2). The resulting second-order differential equation is called the Lane-Emden equation:

1
z2

d
dz

(

z2 dw
dz

)

+ wn = 0. (4.7)

A polytropic stellar model can be constructed by integrating this equation outwards from the centre.
The boundary conditions (4.4) imply that in the centre (z = 0) we have w = 1 and dw/dz = 0. For
n < 5 the solution w(z) is found to decrease monotonically and to reach zero at finite z = zn, which
corresponds to the surface of the model.

No general analytical solution of the Lane-Emden equation exists. The only exceptions are n = 0,
1 and 5, for which the solutions are:

n = 0 : w(z) = 1 −
z2

6
z0 =

√
6, (4.8)

n = 1 : w(z) =
sin z
z

z1 = π, (4.9)

n = 5 : w(z) =
(

1 +
z2

3

)−1/2

z5 = ∞. (4.10)

The case n = 0 (γ = ∞) corresponds to a homogeneous gas sphere with constant density ρc, following
eq. (4.5). The solution for n = 5 is peculiar in that it has infinite radius; this is the case for all n ≥ 5,
while for n < 5 zn grows monotonically with n. For values of n other than 0, 1 or 5 the solution must
be found by numerical integration (this is quite straightforward, see the accompanying computer
practicum). Table 4.1 lists the value of zn for different values of n, as well as several other properties
of the solution that will be discussed below.
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4.1.1 Physical properties of the solutions

Once the solution w(z) of the Lane-Emden equation is found, eq. (4.5) fixes the relative density
distribution of the model, which is thus uniquely determined by the polytropic index n. Given the
solution for a certain n, the physical properties of a polytropic stellar model, such as its mass and
radius, are then determined by the parameters K and ρc, as follows.

The radius of a polytropic model follows from eq. (4.6):

R = αzn =
[

(n + 1)K
4πG

]1/2
ρ

(1−n)/2n
c zn. (4.11)

The mass m(z) interior to z can be obtained from integrating eq. (2.3), using eqs. (4.5), (4.6) and (4.7):

m(z) =
∫ αz

0
4πr2ρ dr = −4πα3ρc z2 dw

dz
. (4.12)

Hence the total mass of a polytropic model is

M = 4πα3ρcΘn = 4π
[

(n + 1)K
4πG

]3/2
ρ

(3−n)/2n
c Θn, (4.13)

where we have defined Θn as

Θn ≡
(

− z2 dw
dz

)

z=zn
. (4.14)

By eliminating ρc from eqs. (4.11) and (4.13) we can find a relation between M, R and K,

K = Nn GM(n−1)/nR(3−n)/n with Nn =
(4π)1/n

n + 1
Θ

(1−n)/n
n z(n−3)/n

n . (4.15)

Numerical values of Θn and Nn are given in Table 4.1. From the expressions above we see that
n = 1 and n = 3 are special cases. For n = 1 the radius is independent of the mass, and is uniquely
determined by the value of K. Conversely, for n = 3 the mass is independent of the radius and
is uniquely determined by K. For a given K there is only one value of M for which hydrostatic
equilibrium can be satisfied if n = 3.

The average density ρ̄ = M/( 4
3πR

3) of a polytropic star is related to the central density by
eqs. (4.11) and (4.13) as

ρ̄ =

(

−
3
z

dw
dz

)

z=zn
ρc =

3Θn
z3
n
ρc (4.16)

Hence the ratio ρc/ρ̄, i.e. the degree of central concentration of a polytrope, only depends on the
polytropic index n. This dependence is also tabulated in Table 4.1. One may invert this relation to
find the central density of a polytropic star of a given mass and radius.

The central pressure of a polytropic star follows from eq. (4.1), which can be written as

Pc = K ρ(n+1)/n
c .

In combination with (4.15) and (4.16) this gives

Pc = Wn
GM2

R4 with Wn =
z4
n

4π(n + 1)Θ2
n
. (4.17)
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Note that in our simple scaling estimate, eq. (2.14), we found the same proportionality Pc ∝ GM2/R4,
where the proportionality constant Wn is now determined by the polytropic index n (see Table 4.1).
We can eliminate R in favour of ρc to obtain the very useful relation

Pc = Cn GM2/3ρ4/3
c with Cn =

(4π)1/3

n + 1
Θ
−2/3
n , (4.18)

where you may verify that the constant Cn is only weakly dependent on n, unlike Wn in (4.17).
We give without derivation an expression for the gravitational potential energy of a polytrope of

index n:

Egr = −
3

5 − n
GM2

R
. (4.19)

(The derivation can be found in K&W Sec. 19.9 and Maeder Sec. 24.5.1.)

4.2 Application to stars

Eq. (4.15) expresses a relation between the constant K in eq. (4.1) and the mass and radius of a
polytropic model. This relation can be interpreted in two very different ways:

• The constant K may be given in terms of physical constants. This is the case, for example, for a
star dominated by the pressure of degenerate electrons, in either the non-relativistic limit or the
extremely relativistic limit. In that case eq. (4.15) defines a unique relation between the mass
and radius of a star.

• In other cases the constant K merely expresses proportionality in eq. (4.1), i.e. K is a free
parameter that is constant in a particular star, but may vary from star to star. In this case there
are many different possible values of M and R. For a star with a given mass and radius, the
corresponding value of K for this star can be determined from eq. (4.15).

In this section we briefly discuss examples for each of these two interpretations.

4.2.1 White dwarfs and the Chandrasekhar mass

Stars that are so compact and dense that their interior pressure is dominated by degenerate electrons
are known observationally as white dwarfs. They are the remnants of stellar cores in which hydrogen
has been completely converted into helium and, in most cases, also helium has been fused into carbon
and oxygen. Since the pressure of a completely degenerate electron gas is a function of density only
(Sec. 3.3.5), the mechanical structure if a white dwarf is fixed and is independent of temperature. We
can thus understand some of the structural properties of white dwarfs by means of polytropic models.

We start by considering the equation of state for a degenerate, non-relativistic electron gas. From
eq. (3.35) this can be described by a polytropic relation with n = 1.5. Since the corresponding K
is determined by physical constants, eq. (4.15) shows that such a polytrope follows a mass-radius
relation of the from

R ∝ M−1/3. (4.20)

More massive white dwarfs are thus more compact, and therefore have a higher density. Above a
certain density the electrons will become relativistic as they are pushed up to higher momenta by the
Pauli exclusion principle. The degree of relativity increases with density, and therefore with the mass
of the white dwarf, until at a certain mass all the electrons become extremely relativistic, i.e., their
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speed υe → c. In this limit the equation of state has changed from eq. (3.35) to eq. (3.37), which
is also a polytropic relation but with n = 3. We have already seen above that an n = 3 polytrope is
special in the sense that it has a unique mass, which is determined by K and is independent of the
radius:

M = 4πΘ3

( K
πG

)3/2
. (4.21)

This value corresponds to an upper limit to the mass of a gas sphere in hydrostatic equilibrium that
can be supported by degenerate electrons, and thus to the maximum possible mass for a white dwarf.
Its existence was first found by Chandrasekhar in 1931, after whom this limiting mass was named.
Substituting the proper numerical values into eq. (4.21), with K corresponding to eq. (3.37), we obtain
the Chandrasekhar mass

MCh = 5.836 µ−2
e M⊙. (4.22)

White dwarfs are typically formed of helium, carbon or oxygen, for which µe = 2 and therefore
MCh = 1.46 M⊙. Indeed no white dwarf with a mass exceeding this limit is known to exist.

4.2.2 Eddington’s standard model

As an example of a situation where K is not fixed by physical constants but is essentially a free
parameter, we consider a star in which the pressure is given by a mixture of ideal gas pressure and
radiation pressure, eq. (3.45). In particular we make the assumption that the ratio β of gas pressure to
total pressure is constant, i.e. has the same value in each layer of the star. Since Pgas = β P we can
write

P =
1
β

R
µ
ρT, (4.23)

while also

1 − β =
Prad

P
=
aT 4

3P
. (4.24)

Thus the assumption of constant β means that T 4 ∝ P throughout the star. If we substitute the
complete expression for T 4 into eq. (4.24) we obtain

P =
(

3R4

aµ4
1 − β
β4

)1/3

ρ4/3, (4.25)

which is a polytropic relation with n = 3 for constant β. Since we are free to choose β between 0 and
1, the constant K is indeed a free parameter dependent on β.

The relation (4.25) was derived by Arthur Eddington in the 1920s for his famous ‘standard model’.
He found that in regions with a high opacity κ (see Ch. 5) the ratio of local luminosity to mass coor-
dinate l/m is usually small, and vice versa. Making the assumption that κl/m is constant throughout
the star is equivalent to assuming that β is constant (again, see Ch. 5). Indeed, for stars in which
radiation is the main energy transport mechanism this turns out to be approximately true, even though
it is a very rough approximation to the real situation. Nevertheless, the structure of stars on the main
sequence with M ∼> M⊙ is reasonably well approximated by that of a n = 3 polytrope. Since the
mass of a n = 3 polytrope is given by eq. (4.21), we see from eq. (4.25) that there is a unique relation
between the mass M of a star and β. The relative contribution of radiation pressure increases with the
mass of a star. This was also noted by Eddington, who pointed out that the limited range of known
stellar masses corresponds to values of β that are significantly different from 0 or 1.
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Suggestions for further reading

Polytropic stellar models are briefly covered in Chapter 24.5 of Maeder and treated more extensively
in Chapter 19 of Kippenhahn & Weigert and Chapter 7.2 of Hansen.

Exercises

4.1 The Lane-Emden equation

(a) Derive eq. (4.2) from the stellar structure equations for mass continuity and hydrostatic equilib-
rium. (Hint: multiply the hydrostatic equation by r2/ρ and take the derivative with respect to
r).

(b) What determines the second boundary condition of eq. (4.4), i.e., why does the density gradient
have to vanish at the center?

(c) By making the substitutions (4.3), (4.5) and (4.6), derive the Lane-Emden equation (4.7).

(d) Solve the Lane-Emden equation analytically for the cases n = 0 and n = 1.

4.2 Polytropic models

(a) Derive K and γ for the equation of state of an ideal gas at a fixed temperature T , of a non-relativistic
degenerate gas and of a relativistic degenerate gas.

(b) Using the Lane-Emden equation, show that the mass distribution in a polytropic star is given by
eq. (4.12), and show that this yields eq. (4.13) for the total mass of a polytrope.

(c) Derive the expressions for the central density ρc and the central pressure Pc as function of mass
and radius, eqs. (4.16) and (4.17).

(d) Derive eq. (4.18) and compute the constant Cn for several values of n.

4.3 White dwarfs

To understand some of the properties of white dwarfs (WDs) we start by considering the equation of
state for a degenerate, non-relativistic electron gas.

(a) What is the value of K for such a star? Remember to consider an appropriate value of the mean
molecular weight per free electron µe.

(b) Derive how the central density ρc depends on the mass of a non-relativistic WD. Using this with
the result of Exercise 4.2(b), derive a radius-mass relation R = R(M). Interpret this physically.

(c) Use the result of (b) to estimate for which WD masses the relativistic effects would become im-
portant.

(d) Show that the derivation of a R = R(M) relation for the extreme relativistic case leads to a unique
mass, the so-called Chandrasekhar mass. Calculate its value, i.e. derive eq. (4.22).

4.4 Eddington’s standard model

(a) Show that for constant β the virial theorem leads to

Etot =
β

2
Egr = −

β

2 − β
Eint, (4.26)

for a classical, non-relativistic gas. What happens in the limits β→ 1 and β→ 0?
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(b) Verify eq. (4.25), and show that the corresponding constant K depends on β and the mean molec-
ular weight µ as

K =
2.67 × 1015

µ4/3

(

1 − β
β4

)1/3

. (4.27)

(c) Use the results from above and the fact that the mass of an n = 3 polytrope is uniquely determined
by K, to derive the relation M = M(β, µ). This is useful for numerically solving the amount of
radiation pressure for a star with a given mass.
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