
Chapter 9

Early stages of evolution and the main
sequence phase

In this and the following chapters, an account will be given of the evolution of stars as it follows from
full-scale, detailed numerical calculations. Because the stellar evolution equations are highly non-
linear, they have complicated solutions that cannot always be anticipated on the basis of fundamental
principles. We must accept the fact that simple, intuitive explanations cannot always be given for the
results that emerge from numerical computations. As a consequence, the account of stellar evolution
that follows will be more descriptive and less analytical than previous chapters.

This chapter deals with early phases in the evolution of stars, as they evolve towards and during
the main-sequence phase. We start with a very brief (and incomplete) overview of the formation of
stars.

9.1 Star formation and pre-main sequence evolution

The process of star formation constitutes one of the main problems of modern astrophysics. Com-
pared to our understanding of what happens after stars have formed out of the interstellar medium
– that is, stellar evolution – star formation is a very ill-understood problem. No predictive theory of
star formation exists, or in other words: given certain initial conditions, e.g. the density and temper-
ature distributions inside an interstellar cloud, it is as yet not possible to predict with certainty, for
example, the star formation efficiency (which fraction of the gas is turned into stars) and the resulting
initial mass function (the spectrum and relative probability of stellar masses that are formed). We rely
mostly on observations to answer these important questions.

This uncertainty might seem to pose a serious problem for studying stellar evolution: if we do not
know how stars are formed, how can we hope to understand their evolution? The reason that stellar
evolution is a much more quantitative and predictive branch of astrophysics than star formation was
already alluded to in Chapter 7. Once a recently formed star settles into hydrostatic and thermal
equilibrium on the main sequence, its structure is determined by the four structure equations and only
depends on the initial composition. Therefore all the uncertain details of the formation process are
wiped out by the time its nuclear evolution begins.

In the context of this course we can thus be very brief about star formation itself, as it has very
little effect on the properties of stars themselves (at least as far as we are concerned with individual
stars – it does of course have an important effect on stellar populations).

Observations indicate that stars are formed out of molecular clouds, typically giant molecular clouds
with masses of order 105 M⊙. These clouds have typical dimensions of ∼ 10 parsec, temperatures of
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10 − 100 K and densities of 10 − 300 molecules/cm3 (where the lowest temperatures pertain to the
densest parts of the cloud). A certain fraction, about 1 %, of the cloud material is in the form of dust
which makes the clouds very opaque to visual wavelengths. The clouds are in pressure equilibrium
(hydrostatic equilibrium) with the surrounding interstellar medium. Roughly, we can distinguish six
stages in the star formation process.

Interstellar cloud collapse Star formation starts when a perturbation, e.g. due to a shock wave orig-
inated by a nearby supernova explosion or a collision with another cloud, disturbs the pressure
equilibrium and causes (part of) the cloud to collapse under its self-gravity. The condition for
pressure equilibrium to be stable against such perturbations is that the mass involved should be
less than a critical mass, the Jeans mass, which is given by

MJ ≈ 4 × 104 M⊙
(

T
100 K

)3/2 (

n
cm−3

)−1/2

(9.1)

where n is the molecular density by number (see e.g. Maeder Sec. 18.2.1 for a derivation). For
typical values of T and n in molecular clouds MJ ∼ 103−104 M⊙. Cloud fragments with a mass
exceeding the Jeans mass cannot maintain hydrostatic equilibrium and will undergo essentially
free-fall collapse. Although the collapse is dynamical, the timescale τdyn ∝ ρ

−1/2 (eq. 2.18) is
of the order of millions of years because of the low densities involved. The cloud is transparent
to far-infrared radiation and thus cools efficiently, so that the early stages of the collapse are
isothermal.

Cloud fragmentation As the density of the collapsing cloud increases, its Jeans mass decreases by
eq. (9.1). The stability criterion within the cloud may now also be violated, so that the cloud
starts to fragment into smaller pieces, each of which continues to collapse. The fragmentation
process probably continues until the mass of the smallest fragments (dictated by the decreasing
Jeans mass) is less than 0.1 M⊙.

Formation of a protostellar core The increasing density of the collapsing cloud fragment eventu-
ally makes the gas opaque to infrared photons. As a result, radiation is trapped within the
central part of the cloud, leading to heating and an increase in gas pressure. As a result the
cloud core comes into hydrostatic equilibrium and the dynamical collapse is slowed to a quasi-
static contraction. At this stage we may start to speak of a protostar.

Figure 9.1. Timescales and properties
of stars of mass M on the main sequence.
Time along the abscissa is in logarithmic
units to highlight the early phases, t = 0
corresponds to the formation of a hydro-
static core (stage 3 in the text). Initially
the star is embedded in a massive accre-
tion disk for (1 − 2) × 105 years. In low-
mass stars the disk disappears before the
star settles on the zero-age main sequence
(ZAMS). Massive stars reach the ZAMS
while still undergoing strong accretion.
These stars ionize their surroundings and
excite an HII region around themselves.
TAMS stands for terminal-age main se-
quence. Figure from Maeder.
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Figure 9.2. Schematic illustration of four stages
in the evolution of protostars and their circumstellar
disks. On the left, the stellar flux is depicted (shaded
area) and the contribution from the disk (dotted line).
On the right the corresponding geometry of the ob-
ject is shown.
Class 0 objects are very young protostars (∼< 104 yrs)
with almost spherical accretion at a high rate, emit-
ting in the far-IR and sub-mm range. Class I pro-
tostars correspond to an advanced stage of accretion
(age ∼ 105 yrs), where the star is still embedded in a
massive accretion disk, while jets or bipolar outflows
are also observed. In class II the protostar has become
visible as a classical T Tauri star on the pre-main se-
quence (age ∼ 106 yrs), while the accretion disk is
still optically thick giving rise to a large IR excess.
Class III stars are already close to the main sequence
(age ∼ 107 yrs), with an optically thin accretion disk
and weak emission lines. Figure from Maeder.

Accretion The surrounding gas keeps falling onto the protostellar core, so that the next phase is
dominated by accretion. Since the contracting clouds contain a substantial amount of angular
momentum, the infalling gas forms an accretion disk around the protostar. These accretion
disks are a ubiquitous feature of the star formation process and are observed around most very
young stars, mostly at infrared and sub-millimeter wavelengths (see Fig. 9.2).

The accretion of gas generates gravitational energy, part of which goes into further heating of
the core and part of which is radiated away, providing the luminosity of the protostar, so that

L ∼ Lacc =
GMṀ

2R
(9.2)

where M and R are the mass and radius of the core and Ṁ is the mass accretion rate. The factor
1
2 originates from the fact that half of the potential energy is dissipated in the accretion disk.
Meanwhile he core heats up almost adiabatically since the accretion timescale τacc = M/Ṁ is
much smaller than the thermal timescale τKH.

Dissociation and ionization The gas initially consists of molecular hydrogen and behaves like an
ideal gas, such that γad >

4
3 and the protostellar core is dynamically stable. When the core

temperature reaches ∼ 2000 K molecular hydrogen starts to dissociate, which is analogous to
ionization and leads to a strong increase of the specific heat and a decrease of γad below the
critical value of 4

3 (Sect. 3.5). Hydrostatic equilibrium is no longer possible and a renewed
phase of dynamical collapse follows, during which the gravitational energy release is absorbed
by the dissociating molecules without a significant rise in temperature. When H2 is completely
dissociated into atomic hydrogen HE is restored and the temperature rises again. Somewhat
later, further dynamical collapse phases follow when first H and then He are ionized at ∼ 104 K.
When ionization of the protostar is complete it settles back into hydrostatic equilibrium at a
much reduced radius (see below).
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Pre-main sequence phase Finally, the accretion slows down and eventually stops and the protostar
is revealed as a pre-main sequence star. Its luminosity is now provided by gravitational con-
traction and, according to the virial theorem, its internal temperature rises as T ∝ M2/3ρ1/3

(Chapter 8). The surface cools and a temperature gradient builds up, transporting heat out-
wards. Further evolution takes place on the thermal timescale τKH.

A rough estimate of the radius Rp of a protostar after the dynamical collapse phase can be obtained
by assuming that all the energy released during the collapse was absorbed in dissociation of molecular
hydrogen (requiring χH2 = 4.48 eV per H2 molecule) and ionization of hydrogen (χH = 13.6 eV) and
helium (χHe = 79 eV). Because the final radius will be much smaller than the initial one, we can take
the collapse to start from infinity. After the collapse the protostar is in hydrostatic equilibrium and
must satisfy the virial theorem, Etot =

1
2Egr. Taking Egr as given by eq. (2.28), we can write

α

2
GM2

Rp
≈
M
mu

(

X
2
χH2 + XχH +

Y
4
χHe

)

≡
M
mu
χ. (9.3)

Taking X = 0.72 and Y = 1 − X, we have χ = 16.9 eV per baryon. For a polytrope of index n,
α = 3/(5 − n) (eq. 4.19). We will shortly see that the protostar is completely convective and thus we
can take n = 3

2 and α = 6
7 , such that

Rp ≈
α

2
GMmu

χ
≈ 50R⊙

(

M
M⊙

)

. (9.4)

The average internal temperature can also be estimated from the virial theorem (eq. 2.29),

T̄ ≈
α

3
µ

R

GM
Rp
=

2
3
µ

k
χ ≈ 8 × 104 K, (9.5)

which is independent of the mass of the protostar. At these low temperatures the opacity is very
high, rendering radiative transport inefficient and making the protostar convective throughout. The
properties of such fully convective stars must be examined more closely.

9.1.1 Fully convective stars: the Hayashi line

We have seen in Sect. 7.2.3 that as the effective temperature of a star decreases the convective envelope
gets deeper, occupying a larger and larger part of the mass. If Teff is small enough stars can therefore
become completely convective. In that case, as we derived in Sect. 5.5.2, energy transport is very effi-
cient throughout the interior of the star, and a tiny superadiabaticity ∇−∇ad is sufficient to transport a
very large energy flux. The structure of such a star can be said to be adiabatic, meaning that the tem-
perature stratification (the variation of temperature with depth) as measured by ∇ = d logT/d log P is
equal to ∇ad. Since an almost arbitrarily high energy flux can be carried by such a temperature gradi-
ent, the luminosity of a fully convective star is practically independent of its structure – unlike for a
star in radiative equilibrium, for which the luminosity is strongly linked to the temperature gradient.

It turns out that:

Fully convective stars of a given mass occupy an almost vertical line in the H-R diagram (i.e. with
Teff ≈ constant). This line is known as the Hayashi line. The region to the right of the Hayashi
line in the HRD (i.e. at lower effective temperatures) is a forbidden region for stars in hydrostatic
equilibrium. On the other hand, stars to the left of the Hayashi line (at higher Teff) cannot be fully
convective but must have some portion of their interior in radiative equilibrium.

Since these results are important, not only for pre-main sequence stars but also for later phases of
evolution, we will do a simplified derivation of the properties of the Hayashi line in order to make the
above-mentioned results plausible.
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Simple derivation of the Hayashi line

For any luminosity L, the interior structure is given by ∇ = ∇ad. For an ideal gas we have a constant
∇ad = 0.4, if we ignore the variation of ∇ad in partial ionization zones. We also ignore the non-zero
superadiabaticity of ∇ in the sub-photospheric layers (Sect. 5.5.2). The temperature stratification
throughout the interior can then be described by a power law T ∝ P0.4. Using the ideal gas law,
P ∝ ρT , we can eliminate T from both expressions and write

P = Kρ5/3,

which describes a polytrope of index n = 3
2 . Indeed, for an ideal gas the adiabatic exponent γad =

5
3 .

The constant K for a polytropic stellar model of index n is related to the mass M and radius R by
eq. (4.15). For our fully convective star with n = 3

2 we have N3/2 = 0.42422 (Table 4.1) and therefore

K = 0.42422GM1/3R. (9.6)

Since the luminosity of a fully convective star is not determined by its interior structure, it must
follow from the conditions (in particular the opacity) in the thin radiative layer from which photons
escape, the photosphere. We approximate the photosphere by a spherical surface of negligible thick-
ness, where we assume the photospheric boundary conditions (7.9) to hold. Writing the pressure,
density and opacity in the photosphere (at r = R) as PR, ρR and κR and the photospheric temperature
as Teff , we can write the boundary conditions as

κRPR =
2
3
GM
R2 , (9.7)

L = 4πR2σT 4
eff , (9.8)

and we assume a power-law dependence of κ on ρ and T so that

κR = κ0 ρR
aTbeff . (9.9)

The equation of state in the photospheric layer is

PR =
R

µ
ρRTeff . (9.10)

The interior, polytropic structure must match the conditions in the photosphere so that (using eq. 9.6)

PR = 0.42422GM1/3R ρR5/3. (9.11)

For a given mass M, eqs. (9.7-9.11) constitute five equations for six unknowns, PR, ρR, κR, Teff , L and
R. The solution thus always contains one free parameter, that is, the solution is a relation between
two quantities, say L and Teff . This relation describes the Hayashi line for a fully convective star of
mass M.

Since we have assumed power-law expressions in all the above equations, the set of equations can
be solved straightforwardly (involving some tedious algebra) to give a power-law relation between L
and Teff after eliminating all other unknowns. The solution can be written as

logTeff = A log L + B log M +C (9.12)

where the constants A and B depend on the exponents a and b in the assumed expression for the
opacity (9.9),

A =
3
2a −

1
2

9a + 2b + 3
and B =

a + 3
9a + 2b + 3

. (9.13)

127



ZAMS

4
2
1
0.5
0.25

3.54.04.5

−2

 0

 2

 4

 6

log Teff (K)

lo
g 

L 
(L

su
n)

log Teff (K)

lo
g 

L 
(L

su
n)

log Teff (K)

lo
g 

L 
(L

su
n)

log Teff (K)

lo
g 

L 
(L

su
n)

log Teff (K)

lo
g 

L 
(L

su
n)

Figure 9.3. The position of the Hayashi lines in
the H-R diagram for masses M = 0.25, 0.5, 1.0, 2.0
and 4.0 M⊙ as indicated. The lines are analytic fits
to detailed models computed for composition X =
0.7,Z = 0.02. The zero-age main sequence (ZAMS)
for the same composition is shown as a dashed line,
for comparison.
Note that the Hayashi lines do not have a constant
slope, as expected from the simple analysis, but
have a convex shape where the constant A (eq. 9.12)
changes sign and becomes negative for high lumi-
nosities. The main reason is our neglect of ionization
zones (where ∇ad < 0.4) and the non-zero supera-
diabaticity in the outer layers, both of which have a
larger effect in more extended stars.

Therefore the shape of the Hayashi line in the HRD is determined by how the opacity in the photo-
sphere depends on ρ and T . Since fully convective stars have very cool photospheres, the opacity is
mainly given by H− absorption (Sect. 5.3) which increases strongly with temperature. According to
eq. (5.34), a ≈ 0.5 and b ≈ 9 (i.e. κ ∝ T 9!) in the the relevant range of density and temperature, which
gives A ≈ 0.01 and B ≈ 0.14. Therefore (see Fig. 9.3)

• for a certain mass the Hayashi line is a very steep, almost vertical line in the HRD,

• the position of the Hayashi line depends on the mass, being located at higher Teff for higher
mass.

We can intuitively understand the steepness of the Hayashi line from the strong increase of H−
opacity with temperature. Suppose such a fully convective star would increase its radius slightly
while attempting to keep L constant. Then the temperature in the photosphere would decrease and
the photosphere would become much more transparent. Hence energy can escape much more easily
from the interior, in other words: the luminosity will in fact increase strongly with a slight decrease
in photospheric temperature.

The forbidden region in the H-R diagram

Consider models in the neighbourhood of the Hayashi line in the H-R diagram for a star of mass M.
These models cannot have ∇ = ∇ad throughout, because otherwise they would be on the Hayashi line.
Defining ∇̄ as the average value of d logT/d log P over the entire star, models on either side of the
Hayashi line (at lower or higher Teff) have either ∇̄ > ∇ad or ∇̄ < ∇ad. It turns out (after more tedious
analysis of the above equations and their dependence on polytropic index n) that models with ∇̄ < ∇ad
lie at higher Teff than the Hayashi line (to its left in the HRD) while models with ∇̄ > ∇ad lie at lower
Teff (to the right in the HRD).

Now consider the significance of ∇̄ ! ∇ad. If on average ∇̄ < ∇ad then some part of the star
must have ∇ < ∇ad, that is, a portion of the star must be radiative. Since models in the vicinity
of the Hayashi line still have cool outer layers with high opacity, the radiative part must lie in the
deep interior. Therefore stars located (somewhat) to the left of the Hayashi line have radiative cores
surrounded by convective envelopes (if they are far to the left, they can of course be completely
radiative).
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Figure 9.4. Pre-main-sequence
evolution tracks for 0.3 − 2.5 M⊙,
according to the calculations of
D’Antona & Mazzitelli (1994). The
dotted lines are isochrones, connect-
ing points on the tracks with the
same age (between t = 105 yrs
and 107 yrs, as indicated). Also
indicated as solid lines that cross
the tracks are the approximate loca-
tions of deuterium burning (between
the upper two lines, near the t ∼
105 yr isochrone) and lithium burn-
ing (crossing the tracks at lower lu-
minosity, at t > 106 yr).

On the other hand, if ∇̄ > ∇ad then a significant part of the star must have a superadiabatic
temperature gradient (that is to say, apart from the outermost layers which are always superadiabatic).
According to the analysis of Sect. 5.5.2, a significantly positive ∇ − ∇ad will give rise to a very
large convective energy flux, far exceeding normal stellar luminosities. Such a large energy flux
very rapidly (on a dynamical timescale) transports heat outwards, thereby decreasing the temperature
gradient in the superadiabatic region until ∇ = ∇ad again. This restructuring of the star will quickly
bring it back to the Hayashi line. Therefore the region to the right of the Hayashi line, with Teff <

Teff,HL, is a forbidden region for any star in hydrostatic equilibrium.

9.1.2 Pre-main-sequence contraction

As a newly formed star emerges from the dynamical collapse phase it settles on the Hayashi line
appropriate for its mass, with a radius roughly given by eq. (9.4). From this moment on we speak of
the pre-main sequence phase of evolution. The pre-main sequence (PMS) star radiates at a luminosity
determined by its radius on the Hayashi line. Since it is still too cool for nuclear burning, the energy
source for its luminosity is gravitational contraction. As dictated by the virial theorem, this leads to
an increase of its internal temperature. As long as the opacity remains high and the PMS star remains
fully convective, it contracts along its Hayashi line and thus its luminosity decreases. Since fully
convective stars are accurately described by n = 1.5 polytropes, this phase of contraction is indeed
homologous to a very high degree! Thus the central temperature increases as Tc ∝ ρ1/3

c ∝ 1/R.
As the internal temperature rises the opacity (and thus ∇rad) decreases, until at some point ∇rad <

∇ad in the central parts of the star and a radiative core develops. The PMS star then moves to the
left in the H-R diagram, evolving away from the Hayashi line towards higher Teff (see Fig. 9.4). As
it keeps on contracting the extent of its convective envelope decreases and its radiative core grows
in mass. (This phase of contraction is no longer homologous, because the density distribution must
adapt itself to the radiative structure.) The luminosity no longer decreases but increases somewhat.
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Once the star is mainly radiative further contraction is again close to homologous. The luminosity
is now related to the temperature gradient and mostly determined by the mass of the protostar (see
Sect. 7.4.2). This explains why PMS stars of larger mass turn away from the Hayashi line at a higher
luminosity than low-mass stars, and why their luminosity remains roughly constant afterward.

Contraction continues, as dictated by the virial theorem, until the central temperature becomes
high enough for nuclear fusion reactions. Once the energy generated by hydrogen fusion compensates
for the energy loss at the surface, the star stops contracting and settles on the zero-age main sequence
(ZAMS) if its mass is above the hydrogen burning limit of 0.08 M⊙ (see Chapter 8). Since the nuclear
energy source is much more concentrated towards the centre than the gravitational energy released
by overall contraction, the transition from contraction to hydrogen burning again requires a (non-
homologous) rearrangement of the internal structure.

Before thermal equilibrium on the ZAMS is reached, however, several nuclear reactions have
already set in. In particular, a small quantity of deuterium is present in the interstellar gas out of
which stars form, with a mass fraction ∼ 10−5. Deuterium is a very fragile nucleus that reacts easily
with normal hydrogen (2H + 1H → 3He + γ, the second reaction in the pp chain). This reaction
destroys all deuterium present in the star when T ≈ 1.0 × 106 K, while the protostar is still on the
Hayashi line. The energy produced (5.5 MeV per reaction) is large enough to halt the contraction of
the PMS star for a few times 105 yr. (A similar but much smaller effect happens somewhat later at
higher T when the initially present lithium, with mass fraction ∼< 10−8, is depleted). Furthermore, the
12C(p, γ)13N reaction is already activated at a temperature below that of the full CNO-cycle, due to
the relatively large initial 12C abundance compared to the equilibrium CNO abundances. Thus almost
all 12C is converted into 14N before the ZAMS is reached. The energy produced in this way also halts
the contraction temporarily and gives rise to the wiggles in the evolution tracks just above the ZAMS
location in Fig, 9.4. Note that this occurs even in low-mass stars, ∼< 1 M⊙, even though the pp chain
takes over the energy production on the main sequence in these stars once CN equilibrium is achieved
(see Sect. 9.2).

Finally, the time taken for a protostar to reach the ZAMS depends on its mass. This time is
basically the Kelvin-Helmholtz contraction timescale (eq. 2.36). Since contraction is slowest when
both R and L are small, the pre-main sequence lifetime is dominated by the final stages of contraction,
when the star is already close to the ZAMS. We can therefore estimate the PMS lifetime by putting
ZAMS values into eq. (2.36) which yields τPMS ≈ 107(M/M⊙)−2.5 yr. Thus massive protostars reach
the ZAMS much earlier than lower-mass stars (and the term ‘zero-age’ main sequence is somewhat
misleading in this context, although it hardly makes a difference to the total lifetime of a star). Indeed
in young star clusters (e.g. the Pleiades) only the massive stars have reached the main sequence while
low-mass stars still lie above and to the right of it.

9.2 The zero-age main sequence

Stars on the zero-age main sequence are (nearly) homogeneous in composition and are in complete
(hydrostatic and thermal) equilibrium. Detailed models of ZAMS stars can be computed by solv-
ing the four differential equations for stellar structure numerically. It is instructive to compare the
properties of such models to the simple main-sequence homology relations derived in Sect. 7.4.

From the homology relations we expect a homogeneous, radiative star in hydrostatic and thermal
equilibrium with constant opacity and an ideal-gas equation of state to follow a mass-luminosity and
mass-radius relation (7.32 and 7.36),

L ∝ µ4 M3, R ∝ µ
ν−4
ν+3 M

ν−1
ν+3 .
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Figure 9.5. ZAMS mass-luminosity (left) and mass-radius (right) relations from detailed structure models
with X = 0.7,Z = 0.02 (solid lines) and from homology relations scaled to solar values (dashed lines). For
the radius homology relation, a value ν = 18 appropriate for the CNO cycle was assumed (giving R ∝ M0.81);
this does not apply to M < 1 M⊙ so the lower part should be disregarded. Symbols indicate components of
double-lined eclipsing binaries with accurately measured M, R and L, most of which are MS stars.

These relations are shown as dashed lines in Fig. 9.5, where they are compared to observed stars with
accurately measured M, L and R (see Chapter 1) and to detailed ZAMS models. The mass-radius
homology relation depends on the temperature sensitivity (ν) of the energy generation rate, and is
thus expected to be different for stars in which the pp chain dominates (ν ≈ 4, R ∝ M0.43) and stars
dominated by the CNO cycle (ν ≈ 18, R ∝ µ0.67M0.81, as was assumed in Fig. 9.5).

Homology predicts the qualitative behaviour rather well, that is, a steep L-M relation and a much
shallower R-M relation. However, it is not quantitatively accurate and it cannot account for the
changes in slope (d log L/d log M and d logR/d log M) of the relations. This was not to be expected,
given the simplifying assumptions made in deriving the homology relations. The slope of the L-
M relation is shallower than the homology value of 3 for masses below 1 M⊙, because such stars
have large convective envelopes (as illustrated in Sect. 5.5; see also Sect. 9.2.2 below). The slope is
significantly steeper than 3 for masses between 1 and 10 M⊙: in these stars the main opacity source is
free-free and bound-free absorption, which increases outward rather than being constant through the
star. In very massive stars, radiation pressure is important which results in flattening the L-M relation.
The reasons for the changes in d logR/d log M are similar. Note that for low masses we should have
used the homology relation for the pp chain (for reasons explained in Sect. 9.2.1 below), which has
a smaller slope – the opposite of what is seen in the detailed ZAMS models. The occurrence of
convective regions (see Sect. 9.2.2) is the main reason for this non-homologous behaviour.

The detailed ZAMS models do reproduce the observed stellar luminosities quite well. The models
trace the lower boundary of observed luminosities, consistent with the expected increase of L with
time during the main sequence phase (see Sect. 9.3). The same can be said for the radii (right panel
of Fig. 9.5), although the scatter in observed radii appears much larger. Partly this is due to the much
finer scale of the ordinate in this diagram compared to the luminosity plot. The fact that most of the
observed stellar radii are larger than the detailed ZAMS models is explained by expansion during
(and after) the main sequence (see Sect. 9.3).
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Figure 9.6. The location of the zero-age main
sequence in the Hertzsprung-Russell diagram for
homogeneous, detailed stellar models with X =
0.7,Z = 0.02 (blue solid line) and with X =

0.757,Z = 0.001 (red dashed line). Plus symbols
indicate models for specific masses (in units of M⊙).
ZAMS models for metal-poor stars are hotter and
have smaller radii. Relatively low-mass stars at low
metallicity are also more luminous than their metal-
rich counterparts.

The location of the detailed ZAMS models in the H-R diagram is shown in Fig. 9.6. The solid
(blue) line depicts models for quasi-solar composition, which were also used in Fig. 9.5. The increase
of effective temperature with stellar mass (and luminosity) reflects the steep mass-luminosity relation
and the much shallower mass-radius relation – more luminous stars with similar radii must be hotter,
by eq. (1.1). The slope of the ZAMS in the HRD is not constant, reflecting non-homologous changes
in structure as the stellar mass increases.

The effect of composition on the location of the ZAMS is illustrated by the dashed (red) line,
which is computed for a metal-poor mixture characteristic of Population II stars. Metal-poor main
sequence stars are hotter and have smaller radii. Furthermore, relatively low-mass stars are also more
luminous than their metal-rich counterparts. One reason for these differences is a lower bound-free
opacity at lower Z (eq. 5.33), which affects relatively low-mass stars (up to about 5 M⊙). On the
other hand, higher-mass stars are dominated by electron-scattering opacity, which is independent of
metallicity. These stars are smaller and hotter for a different reason (see Sect. 9.2.1).

9.2.1 Central conditions

We can estimate how the central temperature and central density scale with mass and composition for
a ZAMS star from the homology relations for homogeneous, radiative stars in thermal equilibrium
(Sec. 7.4.2, see eqs. 7.37 and 7.38 and Table 7.1). From these relations we may expect the central
temperature to increase with mass, the mass dependence being larger for the pp chain (Tc ∝ M0.57)
than for the CNO cycle (Tc ∝ M0.21). Since the CNO cycle dominates at high T , we can expect
low-mass stars to power themselves by the pp chain and high-mass stars by the CNO cycle. This
is confirmed by detailed ZAMS models, as shown in Fig. 9.7. For solar composition, the transition
occurs at T ≈ 1.7 × 107 K, corresponding to M ≈ 1.3 M⊙. Similarly, from the homology relations,
the central density is expected to decrease strongly with mass in stars dominated by the CNO cycle
(ρc ∝ M−1.4), but much less so in pp-dominated low-mass stars (ρc ∝ M−0.3). Also this is borne out
by the detailed models in Fig. 9.7; in fact the central density increases slightly with mass between 0.4
and 1.5 M⊙. The abrupt change in slope at 0.4 M⊙ is related to the fact that stars with M ∼< 0.4 M⊙
are completely convective. For these lowest-mass stars one of the main assumptions made in the
homology relations (radiative equilibrium) breaks down.
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Figure 9.7. Central temperature versus central den-
sity for detailed ZAMS models with X = 0.7,Z =
0.02 (blue solid line) and with X = 0.757,Z = 0.001
(red dashed line). Plus symbols indicate models for
specific masses (in units of M⊙). The dotted lines in-
dicate the approximate temperature border between
energy production dominated by the CNO cycle and
the pp chain. This gives rise to a change in slope of
the Tc, ρc relation.

The energy generation rate of the CNO cycle depends on the total CNO abundance. At lower
metallicity, the transition between pp chain and CNO cycle therefore occurs at a higher temperature.
As a consequence, the mass at which the transition occurs is also larger. Furthermore, high-mass stars
powered by the CNO cycle need a higher central temperature to provide the same total nuclear power.
Indeed, comparing metal-rich and metal-poor stars in Figs. 9.6 and 9.7, the luminosity of two stars
with the same mass is similar, but their central temperature is higher. As a consequence of the virial
theorem (eq. 2.29 or 7.28), their radius must be correspondingly smaller.

9.2.2 Convective regions

An overview of the occurrence of convective regions on the ZAMS as a function of stellar mass is
shown in Fig. 9.8. For any given mass M, a vertical line in this diagram shows which conditions
are encountered as a function of depth, characterized by the fractional mass coordinate m/M. Gray
shading indicates whether a particular mass shell is convective (gray) or radiative (white). We can
thus distinguish three types of ZAMS star:

• completely convective, for M < 0.35 M⊙,

• radiative core + convective envelope, for 0.35 M⊙< M < 1.2 M⊙,

• convective core + radiative envelope, for M > 1.2 M⊙.

This behaviour can be understood from the Schwarzschild criterion for convection, which tells
us that convection occurs when ∇rad > ∇ad (eq. 5.50). As discussed in Sec. 5.5.1, a large value of
∇rad is found when the opacity κ is large, or when the energy flux to be transported (in particular the
value of l/m) is large, or both. Starting with the latter condition, this is the case when a lot of energy
is produced in a core of relatively small mass, i.e. when the energy generation rate ϵnuc is strongly
peaked towards the centre. This is certainly the case when the CNO-cycle dominates the energy
production, since it is very temperature sensitive (ν ≈ 18) which means that ϵnuc rapidly drops as
the temperature decreases from the centre outwards. It results in a steep increase of ∇rad towards the
centre and thus to a convective core. This is illustrated for a 4 M⊙ ZAMS star in Fig. 5.4. The size of
the convective core increases with stellar mass (Fig. 9.8), and it can encompass up to 80% of the mass
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Figure 9.8. Occurrence of convective regions (gray shading) on the ZAMS in terms of fractional mass coor-
dinate m/M as a function of stellar mass, for detailed stellar models with a composition X = 0.70, Z = 0.02.
The solid (red) lines show the mass shells inside which 50% and 90% of the total luminosity are produced. The
dashed (blue) lines show the mass coordinate where the radius r is 25% and 50% of the stellar radius R. (After
Kippenhahn & Weigert.)

of the star when M approaches 100 M⊙. This is mainly related with the fact that at high mass, ∇ad is
depressed below the ideal-gas value of 0.4 because of the growing importance of radiation pressure.
At 100 M⊙ radiation pressure dominates and ∇ad ≈ 0.25.

In low-mass stars the pp-chain dominates, which has a much smaller temperature sensitivity.
Energy production is then distributed over a larger area, which keeps the energy flux and thus ∇rad
low in the centre and the core remains radiative (see the 1 M⊙ model in Fig. 5.4). The transition
towards a more concentrated energy production at M > 1.2 M⊙ is demonstrated in Fig. 9.8 by the
solid lines showing the location of the mass shell inside which most of the luminosity is generated.

Convective envelopes can be expected to occur in stars with low effective temperature, as dis-
cussed in Sec. 7.2.3. This is intimately related with the rise in opacity with decreasing temperature
in the envelope. In the outer envelope of a 1 M⊙ star for example, κ can reach values of 105 cm2/g
which results in enormous values of ∇rad (see Fig. 5.4). Thus the Schwarzschild criterion predicts a
convective outer envelope. This sets in for masses less than ≈ 1.5 M⊙, although the amount of mass
contained in the convective envelope is very small for masses between 1.2 and 1.5 M⊙. Consistent
with the discussion in Sec. 7.2.3, the depth of the convective envelope increases with decreasing Teff
and thus with decreasing M, until for M < 0.35 M⊙ the entire star is convective. Thus these very
low-mass stars lie on their respective Hayashi lines.

9.3 Evolution during central hydrogen burning

Fig. 9.9 shows the location of the ZAMS in the H-R diagram and various evolution tracks for different
masses at Population I composition, covering the central hydrogen burning phase. Stars evolve away
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from the ZAMS towards higher luminosities and larger radii. Low-mass stars (M ∼< 1 M⊙) evolve
towards higher Teff , and their radius increase is modest. Higher-mass stars, on the other hand, evolve
towards lower Teff and strongly increase in radius (by a factor 2 to 3). Evolved main-sequence stars are
therefore expected to lie above and to the right of the ZAMS. This is indeed confirmed by comparing
the evolution tracks to observed stars with accurately determined parameters.

As long as stars are powered by central hydrogen burning they remain in hydrostatic and thermal
equilibrium. Since their structure is completely determined by the four (time-independent) structure
equations, the evolution seen in the HRD is due to the changing composition inside the star (i.e. due
to chemical evolution of the interior). How can we understand these changes?

Nuclear reactions on the MS have two important effects on the structure:

• Hydrogen is converted into helium, therefore the mean molecular weight µ increases in the core
of the star (by more than a factor two from the initial H-He mixture to a pure He core by the
end of central hydrogen burning). The increase in luminosity can therefore be understood from
the homology relation L ∝ µ4 M3. It turns out that the µ4 dependence of this relation describes
the luminosity increase during the MS quite well, if µ is taken as the mass-averaged value over
the whole star.

• The nuclear energy generation rate ϵnuc is very sensitive to the temperature. Therefore nuclear
reactions act like a thermostat on the central regions, keeping the central temperature almost
constant. Since approximately ϵpp ∝ T 4 and ϵCNO ∝ T 18, the CNO cycle is a better thermostat
than the pp chain. Since the luminosity increases and at the same time the hydrogen abundance
decreases during central H-burning, the central temperature must increase somewhat to keep
up the energy production, but the required increase in Tc is very small.

Since µ increases while Tc ≈ constant, the ideal-gas law implies that Pc/ρc ∝ Tc/µmust decrease.
This means that either the central density must increase, or the central pressure must decrease. The
latter possibility means that the layers surrounding the core must expand, as explained below. In
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Figure 9.9. Evolution tracks in the H-
R diagram during central hydrogen burn-
ing for stars of various masses, as la-
belled (in M⊙), and for a composition
X = 0.7,Z = 0.02. The dotted portion
of each track shows the continuation of
the evolution after central hydrogen ex-
haustion; the evolution of the 0.8M⊙ star
is terminated at an age of 14 Gyr. The
thin dotted line in the ZAMS. Symbols
show the location of binary components
with accurately measured mass, luminos-
ity and radius (as in Fig. 9.5). Each sym-
bol corresponds to a range of measured
masses, as indicated in the lower left cor-
ner (mass values in M⊙).
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either case, the density contrast between the core and the envelope increases, so that evolution during
central H-burning causes non-homologous changes to the structure.

9.3.1 Evolution of stars powered by the CNO cycle

We can understand why rather massive stars (M ∼> 1.3 M⊙) expand during the MS by considering the
pressure that the outer layers exert on the core:

Penv =

∫ M

mc

Gm
4πr4 dm (9.14)

Expansion of the envelope (increase in r of all mass shells) means a decrease in the envelope pressure
on the core. This decrease in pressure is needed because of the sensitive thermostatic action of the
CNO cycle, ϵCNO ∝ ρ T 18, which allows only very small increases in Tc and ρc. Since µc increases
as H being is burned into He, the ideal-gas law dictates that Pc must decrease. This is only possible
if Penv decreases, i.e. the outer layers must expand to keep the star in HE (ρenv ↓ and R ↑). This self-
regulating envelope expansion mechanism is the only way for the star to adapt itself to the composition
changes in the core while maintaining both HE and TE.

Another important consequence of the temperature sensitivity the CNO cycle is the large concen-
tration of ϵnuc towards the centre. This gives rise to a large central ∇rad ∝ l/m and hence to convective
cores, which are mixed homogeneously (X(m) = constant within the convective core mass Mcc). This
increases the amount of fuel available and therefore the lifetime of central hydrogen burning (see
Fig. 9.10). In general Mcc decreases during the evolution, which is a consequence of the fact that
∇rad ∝ κ and since κ ∝ 1 + X for the main opacity sources (see Sect. 5.3) the opacity in the core
decreases as the He abundance goes up.

Towards the end of the main sequence phase, as Xc becomes very small, the thermostatic action of
the CNO reactions diminishes and Tc has to increase substantially to keep up the energy production.
When hydrogen is finally exhausted, this occurs within the whole convective core of mass Mcc and
ϵnuc decreases. The star now loses more energy at its surface than is produced in the centre, it gets
out of thermal equilibrium and it will undergo an overall contraction. This occurs at the red point of
the evolution tracks in Fig. 9.9, after which Teff increases. At the blue point of the hook feature in the
HRD, the core has contracted and heated up sufficiently that at the edge of the former convective core
the temperature is high enough for the CNO cycle to ignite again in a shell around the helium core.
This is the start of the hydrogen-shell burning phase which will be discussed in Chapter 10.

9.3.2 Evolution of stars powered by the pp chain

In stars with M ∼< 1.3 M⊙ the central temperature is too low for the CNO cycle and the main energy-
producing reactions are those of the pp chain. The lower temperature sensitivity ϵpp ∝ ρ T 4 means
that Tc and ρc increase more than was the case for the CNO cycle. Therefore the outer layers need to
expand less in order to maintain hydrostatic equilibrium in the core. As a result, the radius increase
in low-mass stars is modest and they evolve almost parallel to the ZAMS in the H-R diagram (see
Fig. 9.9).

Furthermore, the lower T -sensitivity of the pp chains means that low-mass stars have radiative
cores. The rate of change of the hydrogen abundance in each shell is then proportional to the overall
reaction rate of the pp chain (by eq. 6.41), and is therefore highest in the centre. Therefore a hydrogen
abundance gradient builds up gradually, with X(m) increasing outwards (see Fig. 9.10). As a result,
hydrogen is depleted gradually in the core and there is a smooth transition to hydrogen-shell burning.
The evolution tracks for low-mass stars therefore do not show a hook feature.
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Figure 9.10. Hydrogen abundance profiles at different stages of evolution for a 1M⊙ star (left panel) and a
5 M⊙ star (right panel) at quasi-solar composition. Figures reproduced from Salaris & Cassisi.

Note that stars in the approximate mass range 1.1− 1.3 M⊙ (at solar metallicity) undergo a transi-
tion from the pp chain to the CNO cycle as their central temperature increases. Therefore these stars
at first have radiative cores and later develop a growing convective core. At the end of the MS phase
such stars also show a hook feature in the HRD.

9.3.3 The main sequence lifetime

The timescale τMS that a star spends on the main sequence is essentially the nuclear timescale for
hydrogen burning, given by eq. (2.37). Another way of deriving essentially the same result is by
realizing that, in the case of hydrogen burning, the rate of change of the hydrogen abundance X is
related to the energy generation rate ϵnuc by eq. (6.43),

dX
dt
= −
ϵnuc

qH
. (9.15)

Here qH = QH/4mu is the effective energy release per unit mass of the reaction chain (4 1H →
4He + 2 e+ + 2 ν), corrected for the neutrino losses. Hence qH is somewhat different for the pp chain
and the CNO cycle. Note that qH/c2 corresponds to the factor φ used in eq. (2.37). If we integrate
eq. (9.15) over all mass shells we obtain, for a star in thermal equilibrium,

dMH

dt
= −

L
qH
, (9.16)

where MH is the total mass of hydrogen in the star. Note that while eq. (9.15) only strictly applies
to regions where there is no mixing, eq (9.16) is also valid if the star has a convective core, because
convective mixing only redistributes the hydrogen supply. If we now integrate over the main sequence
lifetime we obtain for the total mass of hydrogen consumed

∆MH =
1
qH

∫ τMS

0
L dt =

⟨L⟩ τMS

qH
, (9.17)
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where ⟨L⟩ is the time average of the luminosity over the main-sequence lifetime. We can write ∆MH =

fnucM by analogy with eq. (2.37), and write fnuc as the product of the initial hydrogen mass fraction
X0 and an effective core mass fraction qc inside which all hydrogen is consumed, so that

τMS = X0 qH
qcM
⟨L⟩
. (9.18)

We have seen that the luminosity of main-sequence stars increases strongly with mass. Since the
variation of L during the MS phase is modest, we can assume the same relation between ⟨L⟩ and M
as for the ZAMS. The other factors appearing in eq. (9.18) do not or only weakly depend on the mass
of the star (see below) and can in a first approximation be taken as constant. For a mass-luminosity
relation ⟨L⟩ ∝ Mη – where η depends on the mass range under consideration with η ≈ 3.8 on average
– we thus obtain τMS ∝ M1−η. Hence τMS decreases strongly towards larger masses.

This general trend has important consequences for the observed H-R diagrams of star clusters.
All stars in a cluster can be assumed to have formed at approximately the same time and therefore
now have the same age τcl. Cluster stars with a mass above a certain limit Mto have main-sequence
lifetimes τMS < τcl and have therefore already left the main sequence, while those with M < Mto are
still on the main sequence. The main sequence of a cluster has an upper end (the ‘turn-off point’) at
a luminosity and effective temperature corresponding to Mto, the so-called turn-off mass, determined
by the condition τMS(Mto) = τcl. The turn-off mass and luminosity decrease with cluster age (e.g. see
Fig. 1.2). This the basis for the age determination of star clusters.

The actual main-sequence lifetime depend on a number of other factors. The effective energy
release per gram qH depends on which reactions are involved in energy production and therefore has
a slight mass dependence. More importantly, the exact value of qc is determined by the hydrogen
profile left at the end of the main sequence. This is somewhat mass-dependent, especially for massive
stars in which the relative size of the convective core tends to increase with mass (Fig. 9.8). A larger
convective core mass means a larger fuel reservoir and a longer lifetime. Our poor understanding of
convection and mixing in stars unfortunately introduces considerable uncertainty in the size of this
reservoir and therefore both in the main-sequence lifetime of a star of a particular mass and in its
further evolution.

9.3.4 Complications: convective overshooting and semi-convection

As discussed in Sect. 5.5.4, the size of a convective region inside a star is expected to be larger than
predicted by the Schwarzschild (or Ledoux) criterion because of convective overshooting. However,
the extent dov of the overshooting region is not known reliably from theory. In stellar evolution
calculations this is usually parameterized in terms of the local pressure scale height, dov = αovHP. In
addition, other physical effects such as stellar rotation may contribute to mixing material beyond the
formal convective core boundary. Detailed stellar evolution models in which the effects of convective
overshooting are taken into account generally provide a better match to observations. For this reason,
overshooting (or perhaps a variety of enhanced mixing processes) is thought to have a significant
effect in stars with sizable convective cores on the main sequence.

Overshooting has several important consequences for the evolution of a star:
1. a longer main-sequence lifetime, because of the larger hydrogen reservoir available;

2. a larger increase in luminosity and radius during the main sequence, because of the larger region
inside which µ increases which enhances the effects on L and R discussed earlier in this section;

3. the hydrogen-exhausted core mass is larger at the end of the main sequence, which in turn leads
to (a) larger luminosities during all evolution phases after the main sequence (e.g. see Fig. 10.2
in the next chapter) and, as a result, (b) shorter lifetimes of these post-main sequence phases.
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Figure 9.11. Two examples of isochrone fitting to the colour-magnitude diagrams of open clusters, NGC 752
and IC 4651. The distribution of stars in the turn-off region is matched to isochrones for standard stellar
evolution models (std) and for models with convective overshooting (ovs). The overshooting models are better
able to reproduce the upper extension of the main sequence band in both cases.

Some of these effects, particularly (2) and (3a), provide the basis of observational tests of overshoot-
ing. Stellar evolution models computed with different values of αov are compared to the observed
width of the main sequence band in star clusters (see for example Fig. 9.11), and to the luminosities
of evolved stars in binary systems. If the location in the HRD of the main sequence turn-off in a clus-
ter is well determined, or if the luminosity difference between binary components can be accurately
measured, a quantitative test is possible which allows a calibration of the parameter αov. Such tests
indicate that αov ≈ 0.25 is appropriate in the mass range 1.5 – 8 M⊙. For larger masses, however, αov
is poorly constrained.

Another phenomenon that introduces an uncertainty in stellar evolution models is related to the
difference between the Ledoux and Schwarzschild criterion for convection (see Sect. 5.5.1). Outside
the convective core a composition gradient (∇µ) develops, which can make this region dynamically
stable according to the Ledoux criterion while it would have been convective if the Schwarzschild
criterion were applied. In such a region an over-stable oscillation pattern can develop on the thermal
timescale, which slowly mixes the region and thereby smooths out the composition gradient. This pro-
cess is called semi-convection. Its efficiency and the precise outcome are uncertain. Semi-convective
situations are encountered during various phases of evolution, most importantly during central hy-
drogen burning in stars with M > 10 M⊙ and during helium burning in low- and intermediate-mass
stars.
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Suggestions for further reading

The process of star formation and pre-main sequence evolution is treated in much more detail in
Chapters 18–20 of Maeder, while the properties and evolution on the main sequence are treated in
Chapter 25. See also Kippenhahn & Weigert Chapters 22 and 26–30.

Exercises

9.1 Kippenhahn diagram of the ZAMS
Figure 9.8 indicates which regions in zero-age main sequence stars are convective as a function of the
mass of the star.

(a) Why are the lowest-mass stars fully convective? Why does the mass of the convective envelope
decrease with M and disappear for M ∼> 1.3 M⊙?

(b) What changes occur in the central energy production around M = 1.3 M⊙, and why? How is this
related to the convection criterion? So why do stars with M ≈ 1.3 M⊙ have convective cores while
lower-mass stars do not?

(c) Why is it plausible that the mass of the convective core increases with M?

9.2 Conceptual questions

(a) What is the Hayashi line? Why is it a line, in other words: why is there a whole range of possible
luminosities for a star of a certain mass on the HL?

(b) Why do no stars exist with a temperature cooler than that of the HL? What happens if a star would
cross over to the cool side of the HL?

(c) Why is there a mass-luminosity relation for ZAMS stars? (In other words, why is there a unique
luminosity for a star of a certain mass?)

(d) What determines the shape of the ZAMS is the HR diagram?

9.3 Central temperature versus mass
Use the homology relations for the luminosity and temperature of a star to derive how the central tem-
perature in a star scales with mass, and find the dependence of Tc on M for the pp-chain and for the
CNO-cycle. To make the result quantitative, use the fact that in the Sun with Tc ≈ 1.3 × 107 K the pp-
chain dominates, and that the CNO-cycle dominates for masses M ∼> 1.3 M⊙. (Why does the pp-chain
dominate at low mass and the CNO-cycle at high mass?)

9.4 Mass-luminosity relation
Find the relation between L and M and the slope of the main sequence, assuming an opacity law κ =
κ0 ρT−7/2 (the Kramers opacity law) and that the energy generation rate per unit mass ϵnuc ∝ ρT ν, where
ν = 4.
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