Basic Physics and Radiative Processes

Ricardo Chávez Murillo

April 2021

х

Intensity

 $dE_{\nu} \equiv I_{\nu}(\vec{r}, \vec{l}, t) (\vec{l} \cdot \vec{n}) dA dt d\nu d\Omega$ $= I_{\nu}(x, y, z, \theta, \varphi, t) \cos \theta \, \mathrm{d}A \, \mathrm{d}t \, \mathrm{d}\nu \, \mathrm{d}\Omega$ $erg s^{-1} cm^{-2} Hz^{-1} ster^{-1}$ $I_{\lambda} = I_{\nu} c / \lambda^2$ Ζ $r \sin \theta \Delta \phi$ $W m^{-2} Hz^{-1} ster^{-1}$ $I \equiv \int_0^\infty I_\nu \,\mathrm{d}\nu$ $r^2 \sin \theta \, \Delta \theta \, \Delta \phi$ $r\Delta\theta$ $\Delta \Omega = \sin \theta \, \Delta \theta \, \Delta \varphi$ У O

Mean Intensity

$$J_{\nu}(\vec{r},t) \equiv \frac{1}{4\pi} \int I_{\nu} \,\mathrm{d}\Omega = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} I_{\nu} \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\varphi$$

 ${\rm erg~s^{-1}~cm^{-2}~Hz^{-1}~ster^{-1}}$

Plane parallel approximation $d\Omega = 2\pi \sin \theta \, d\theta = -2\pi \, d\mu \qquad \mu \equiv \cos \theta$ $J_{\nu}(z) = \frac{1}{4\pi} \int_{0}^{\pi} I_{\nu}(z,\theta) \, 2\pi \sin \theta \, d\theta = \frac{1}{2} \int_{-1}^{+1} I_{\nu}(z,\mu) \, d\mu$

$\begin{aligned} \mathcal{F}_{\nu}(\vec{r},\vec{n},t) &\equiv \int I_{\nu} \cos\theta \,\mathrm{d}\Omega = \int_{0}^{2\pi} \int_{0}^{\pi} I_{\nu} \cos\theta \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\varphi. \\ & \text{erg s}^{-1} \,\mathrm{cm}^{-2} \,\mathrm{Hz}^{-1} \end{aligned} \\ \mathcal{F}_{\nu}(z) &= \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\nu} \cos\theta \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\varphi + \int_{0}^{2\pi} \int_{\pi/2}^{\pi} I_{\nu} \cos\theta \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\varphi \\ &= \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\nu} \cos\theta \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\varphi - \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\nu}(\pi-\theta) \cos\theta \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\varphi \\ &\equiv \mathcal{F}_{\nu}^{+}(z) - \mathcal{F}_{\nu}^{-}(z), \end{aligned}$

Flux

Axial Symmetry

$$\begin{aligned} \mathcal{F}_{\nu}(z) &= 2\pi \int_{0}^{\pi} I_{\nu} \cos \theta \sin \theta \, \mathrm{d}\theta \\ &= 2\pi \int_{0}^{1} \mu I_{\nu} \, \mathrm{d}\mu - 2\pi \int_{0}^{-1} \mu I_{\nu} \, \mathrm{d}\mu \\ &= \mathcal{F}_{\nu}^{+}(z) - \mathcal{F}_{\nu}^{-}(z). \end{aligned}$$

$$\mathcal{F}_{\nu}^{\text{surface}} \equiv \mathcal{F}_{\nu}^{+}(r = R) = \pi \overline{I_{\nu}^{+}},$$

$$\mathcal{R}_{\nu} = \frac{4\pi R^2}{4\pi D^2} \,\mathcal{F}_{\nu}^{\text{surface}} = \frac{\pi R^2}{D^2} \,\overline{I}_{\nu}$$

Energy Density

$$u_{\nu} = \frac{1}{c} \int I_{\nu} \,\mathrm{d}\Omega \qquad \qquad \mathrm{erg}\,\mathrm{cm}^{-3}\,\mathrm{Hz}^{-1}$$

$$u = \int u_{\nu} \, \mathrm{d}\nu = \frac{1}{c} \iint B_{\nu} \, \mathrm{d}\Omega \, \mathrm{d}\nu = \frac{4\sigma}{c} T^4$$

$$N_{\rm photon} = \int_0^\infty \frac{u_\nu}{h\nu} \,\mathrm{d}\nu \approx 20 \,T^3 \,\,\mathrm{cm}^{-3}$$

Pressure

$$p_{\nu} = \frac{1}{c} \int I_{\nu} \cos^2 \theta \, \mathrm{d}\Omega$$

p = u/3

 $dyne cm^{-2} Hz^{-1}$

Moments of Intensity

$$J_{\nu}(z) \equiv \frac{1}{2} \int_{-1}^{+1} I_{\nu} \, d\mu$$
$$H_{\nu}(z) \equiv \frac{1}{2} \int_{-1}^{+1} \mu I_{\nu} \, d\mu$$
$$K_{\nu}(z) \equiv \frac{1}{2} \int_{-1}^{+1} \mu^{2} I_{\nu} \, d\mu$$

Eddington flux

$$H_{\nu} = \mathcal{F}_{\nu}/4\pi = F_{\nu}/4$$
$$p_{\nu} = (4\pi/c) K_{\nu}$$

Emission

$$dE_{\nu} \equiv j_{\nu} dV dt d\nu d\Omega$$
$$dI_{\nu}(s) = j_{\nu}(s) ds$$
$$\mathbf{Extinction}$$
$$dI_{\nu} \equiv -\sigma_{\nu} n I_{\nu} ds$$
$$dI_{\nu} \equiv -\alpha_{\nu} I_{\nu} ds$$
$$dI_{\nu} \equiv -\kappa_{\nu} \rho I_{\nu} ds$$

 $m erg \ cm^{-3} \ s^{-1} \ Hz^{-1} \ ster^{-1}$

Source function

$$S_{\nu} \equiv j_{\nu}/\alpha_{\nu}$$

$$erg cm^{-2} s^{-1} Hz^{-1} ster^{-1}$$

$$S_{\nu}^{\text{tot}} = \frac{\sum j_{\nu}}{\sum \alpha_{\nu}}$$

$$S_{\nu}^{\rm tot} = \frac{j_{\nu}^c + j_{\nu}^l}{\alpha_{\nu}^c + \alpha_{\nu}^l} = \frac{S_{\nu}^c + \eta_{\nu}S_{\nu}^l}{1 + \eta_{\nu}} \qquad \qquad \eta_{\nu} \equiv \alpha_{\nu}^l/\alpha_{\nu}^c$$

Transport along a ray

$$dI_{\nu}(s) = I_{\nu}(s + ds) - I_{\nu}(s) = j_{\nu}(s) ds - \alpha_{\nu}(s)I_{\nu}(s) ds$$

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} = j_{\nu} - \alpha_{\nu}I_{\nu}$$

$$\frac{\mathrm{d}I_{\nu}}{\alpha_{\nu}\,\mathrm{d}s} = S_{\nu} - I_{\nu}$$

Optical length and thickness

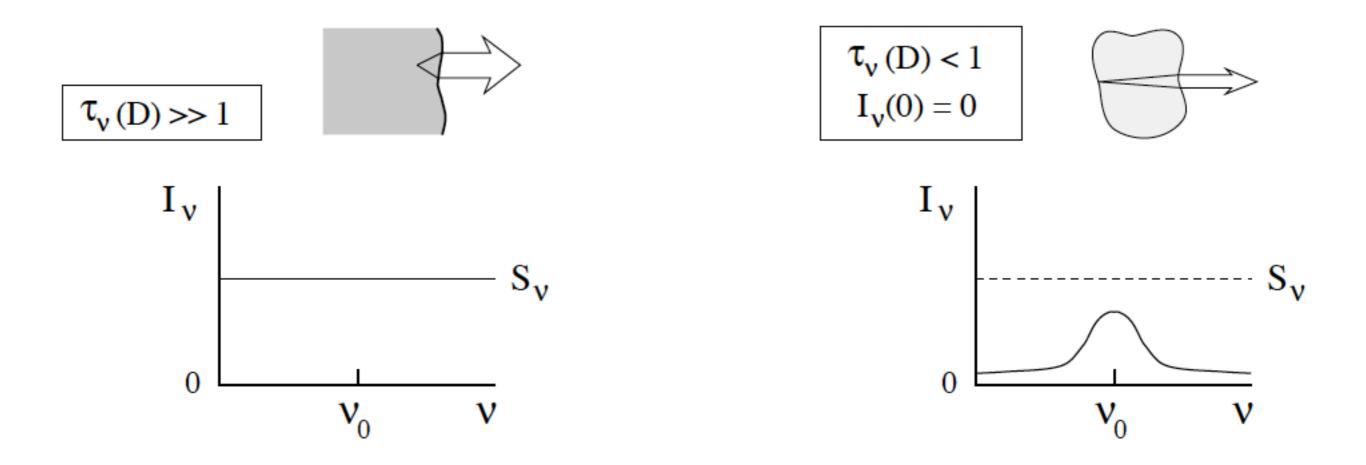
$$d\tau_{\nu}(s) \equiv \alpha_{\nu}(s) ds$$
$$\tau_{\nu}(D) = \int_{0}^{D} \alpha_{\nu}(s) ds$$
$$I_{\nu}(D) = I_{\nu}(0) e^{-\tau_{\nu}(D)}$$

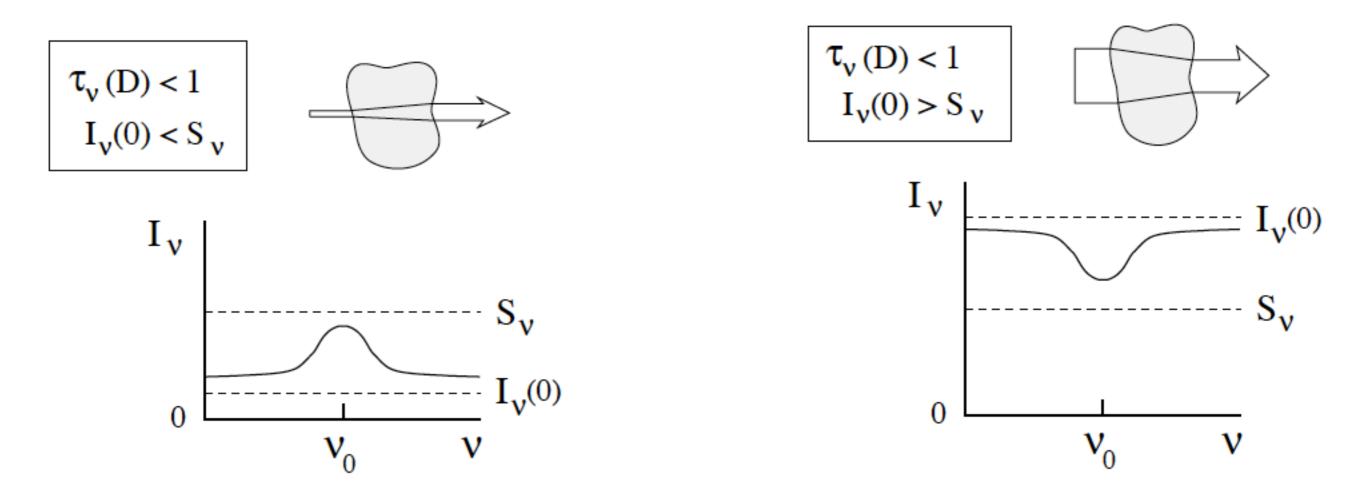
Optical length and thickness

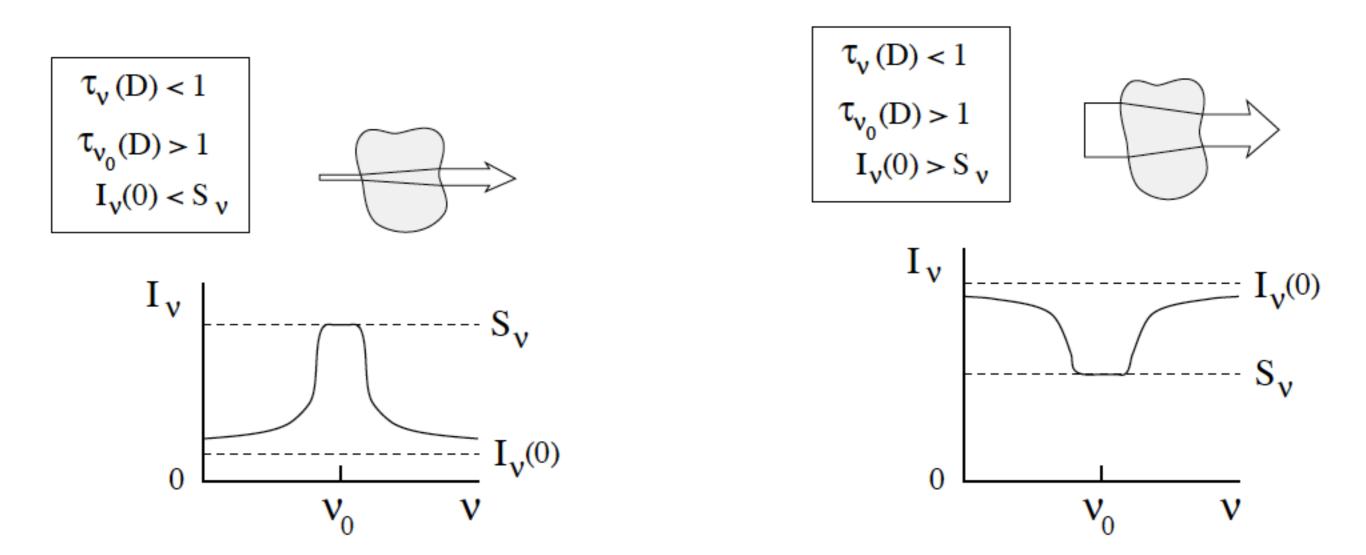
$$\langle \tau_{\nu}(s) \rangle \equiv \frac{\int_{0}^{\infty} \tau_{\nu}(s) e^{-\tau_{\nu}(s)} d\tau_{\nu}(s)}{\int_{0}^{\infty} e^{-\tau_{\nu}(s)} d\tau_{\nu}(s)} = 1$$
$$l_{\nu} = \frac{\langle \tau_{\nu}(s) \rangle}{\alpha_{\nu}} = \frac{1}{\alpha_{\nu}} = \frac{1}{\kappa_{\nu}\rho}$$
$$\frac{dI_{\nu}}{d\tau_{\nu}} = S_{\nu} - I_{\nu}$$
$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) e^{-(\tau_{\nu} - t_{\nu})} dt_{\nu}$$

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) e^{-(\tau_{\nu} - t_{\nu})} dt_{\nu}$$
$$I_{\nu}(D) = I_{\nu}(0) e^{-\tau_{\nu}(D)} + S_{\nu} \left(1 - e^{-\tau_{\nu}(D)}\right)$$

$$I_{\nu}(D) \approx S_{\nu}$$
 optically thick
 $I_{\nu}(D) \approx I_{\nu}(0) + [S_{\nu} - I_{\nu}(0)] \tau_{\nu}(D)$ optically thin







Transport through an atmosphere

Optical depth

$$\mathrm{d}\tau_{\nu\mu} \equiv -\alpha_{\nu} \, \frac{\mathrm{d}z}{|\mu|} \qquad \qquad \mu \equiv \cos\theta$$

$$\tau_{\nu}(z_0) = \int_{\infty}^{z_0} -\alpha_{\nu} \, \mathrm{d}z = \int_{z_0}^{\infty} \alpha_{\nu} \, \mathrm{d}z$$

$$d\tau_{\nu}^{\text{total}} = -(\alpha_{\nu}^{c} + \alpha_{\nu}^{l}) dz = (1 + \eta_{\nu}) d\tau_{\nu}^{c} \qquad \eta_{\nu} \equiv \alpha_{\nu}^{l} / \alpha_{\nu}^{c}$$

Plane-parallel transport equation

$$\mu \frac{\mathrm{d}I_{\nu}}{\mathrm{d}\tau_{\nu}} = I_{\nu} - S_{\nu} \qquad \qquad \tau_{\nu}(z_0) = \int_{\infty}^{z_0} -\alpha_{\nu} \,\mathrm{d}z$$
Formal Solution
$$I^{-}(z_0) = \int_{\infty}^{\tau_{\nu}} G_{\nu}(z_0) - \frac{(t_{\nu} - \tau_{\nu})}{(t_{\nu} - \tau_{\nu})} dz$$

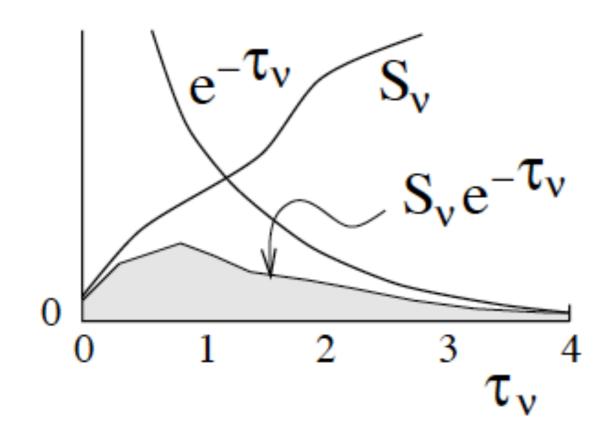
$$\mu < 0 \qquad I_{\nu}^{-}(\tau_{\nu},\mu) = -\int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) e^{-(t_{\nu}-\tau_{\nu})/\mu} dt_{\nu}/\mu \qquad t_{\nu} \equiv \int_{\infty}^{z} -\alpha_{\nu}(z) dz$$

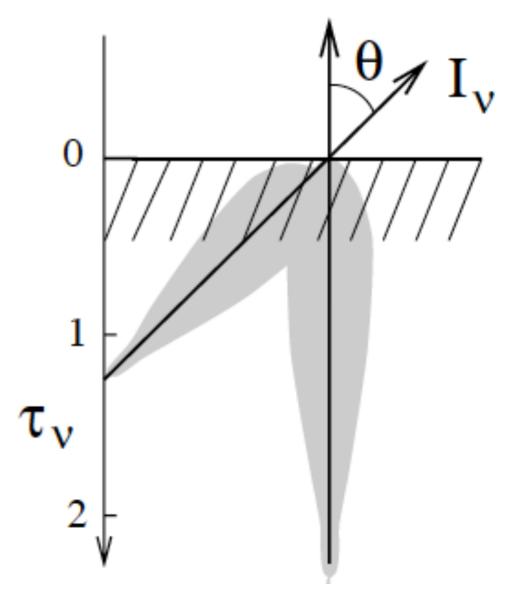
$$\mu > 0] \qquad I_{\nu}^{+}(\tau_{\nu}, \mu) = + \int_{\tau_{\nu}}^{\infty} S_{\nu}(t_{\nu}) \, \mathrm{e}^{-(t_{\nu} - \tau_{\nu})/\mu} \, \mathrm{d}t_{\nu}/\mu$$

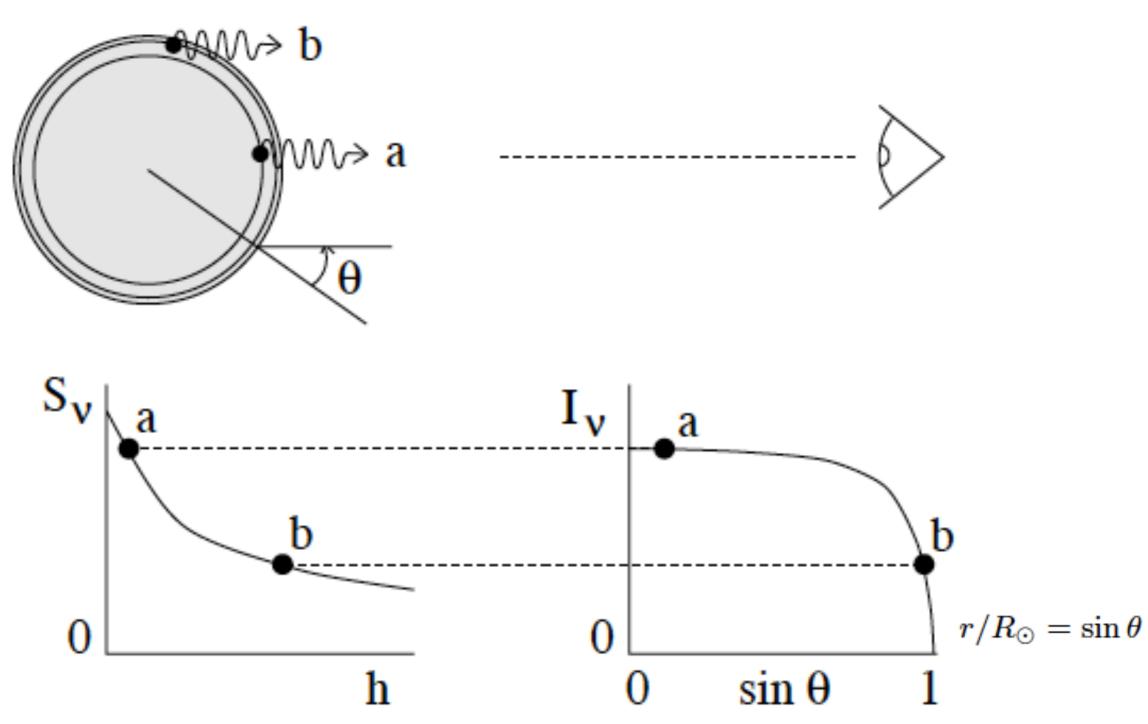
$$I_{\nu}^{+}(\tau_{\nu},\mu) = + \int_{\tau_{\nu}}^{\infty} S_{\nu}(t_{\nu}) \,\mathrm{e}^{-(t_{\nu}-\tau_{\nu})/\mu} \,\mathrm{d}t_{\nu}/\mu$$

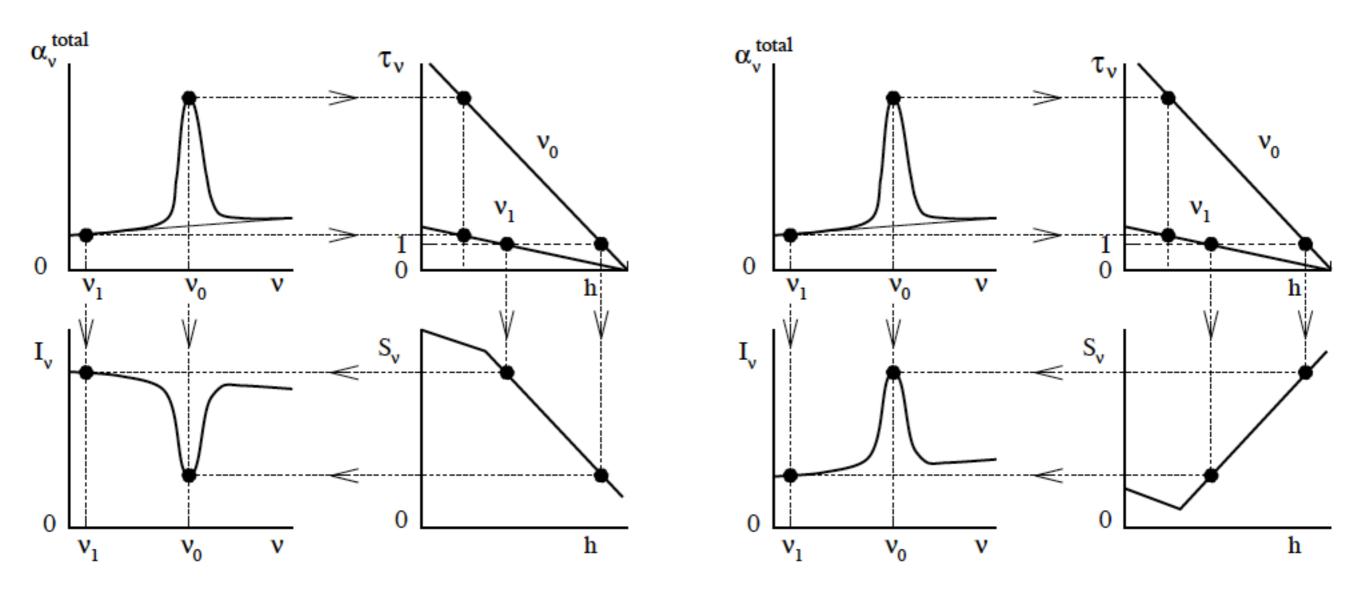
$$\tau_{\nu} = 0, \, \mu > 0 \qquad I_{\nu}^{+}(\tau_{\nu} = 0, \mu) = \int_{0}^{\infty} S_{\nu}(t_{\nu}) \, \mathrm{e}^{-t_{\nu}/\mu} \, \mathrm{d}t_{\nu}/\mu$$

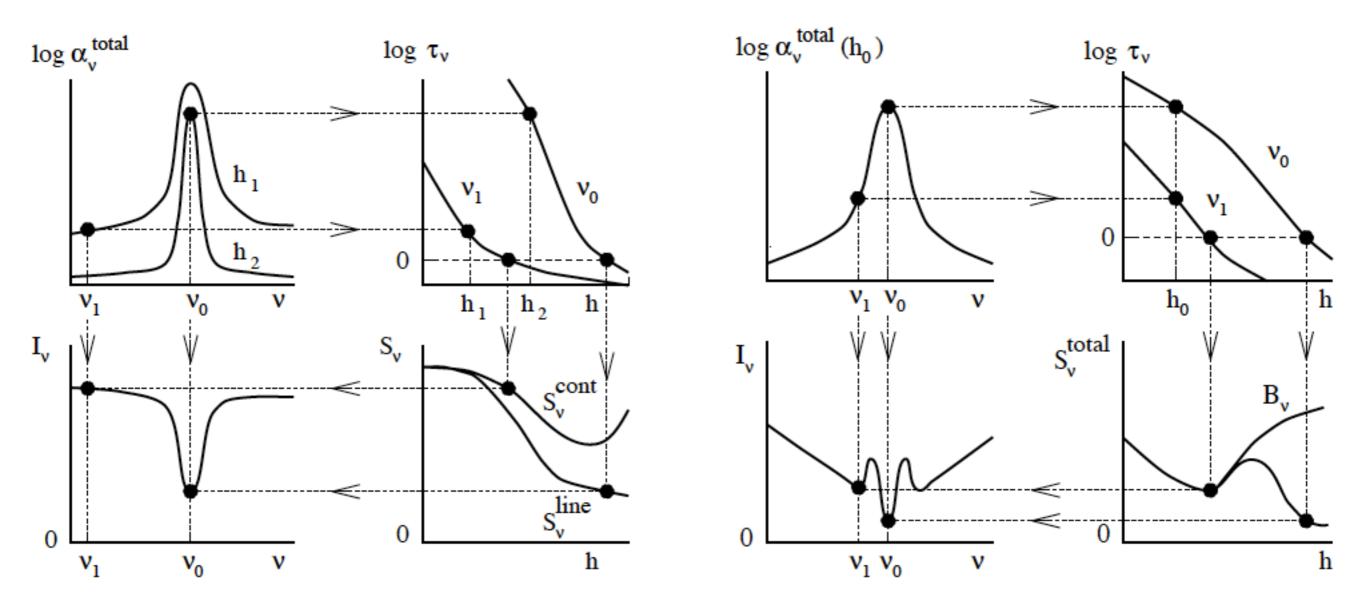
$$S_{\nu}(\tau_{\nu}) = \sum_{n=0}^{\infty} a_{n} \tau_{\nu}^{n} = a_{0} + a_{1} \tau_{\nu} + a_{2} \tau_{\nu}^{2} + \dots + a_{n} \tau_{\nu}^{n}$$
$$\int_{0}^{\infty} x^{n} \exp(-x) \, dx = n!$$
$$I_{\nu}^{+}(\tau_{\nu}=0,\mu) = a_{o} + a_{1}\mu + 2a_{2}\mu^{2} + \dots + n! \, a_{n}\mu^{n}$$
$$I_{\nu}^{+}(\tau_{\nu}=0,\mu) \approx S_{\nu}(\tau_{\nu}=\mu)$$
$$\mathcal{F}_{\nu}^{+}(0) \approx \pi S_{\nu}(\tau_{\nu}=2/3)$$











Bound - bound transitions

- Radiative excitation
- Spontaneous radiative deexcitation
- Induced radiative deexcitation
- Collisional excitation
- Collisional deexcitation

Einstein coefficients

Spontaneous deexcitation

 $A_{ul} \equiv$ transition probability for spontaneous deexcitation from state u to state l per sec per particle in state u.

> $\Delta t = 1/A_{ul}$ $\Delta E = h/(2\pi\Delta t)$ $\gamma^{\rm rad} \equiv 1/\Delta t$ $\Delta \nu = \gamma^{\rm rad}/(2\pi)$ $\psi(\nu - \nu_0) = \frac{\gamma^{\rm rad} / 4\pi^2}{(\nu - \nu_0)^2 + (\gamma^{\rm rad} / 4\pi)^2}$ $\psi(\nu - \nu_0) = \frac{H(a, v)}{\sqrt{\pi} \Delta \nu_{\rm D}}$ $\Delta \nu_{\rm D} \equiv \frac{\nu_0}{c} \sqrt{\frac{2kT}{m}}$

Einstein coefficients

Radiative excitation

 $B_{lu}\overline{J}_{\nu_0}^{\varphi} \equiv \text{number of radiative excitations from state } l \text{ to state } u \text{ per sec per particle in state } l,$

Einstein coefficients

Induced deexcitation

 $B_{ul}\overline{J}_{\nu_0}^{\chi} \equiv$ number of induced radiative deexcitations from state u to state l per sec per particle in state u,

$$\overline{J}_{\nu_0}^{\chi} \equiv \frac{1}{2} \int_0^\infty \int_{-1}^{+1} I_{\nu} \,\chi(\nu - \nu_0) \,\mathrm{d}\mu \,\mathrm{d}\nu = \int_0^\infty J_{\nu} \chi(\nu - \nu_0) \,\mathrm{d}\nu$$

Collisional excitation and deexcitation

- $C_{lu} \equiv$ number of collisional excitations from state *l* to state *u* per sec per particle in state *l*.
- $C_{ul} \equiv$ number of collisional deexcitations from state u to state lper sec per particle in state u

$$n_i C_{ij} = n_i N_e \int_{v_0}^{\infty} \sigma_{ij}(v) v f(v) dv \qquad (1/2)mv_0^2 = h\nu_0$$

Einstein coefficients

Einstein relations

$$\frac{A_{ul}}{B_{ul}} = \frac{2h\nu^3}{c^2}$$

$$\frac{B_{lu}}{B_{ul}} = \frac{g_u}{g_l}$$

$$\frac{C_{ul}}{C_{lu}} = \frac{g_l}{g_u} \,\mathrm{e}^{E_{ul}/kT}$$

Volume coefficients

Extinction

$$\begin{aligned} \alpha_{\nu}^{l} &= \frac{h\nu}{4\pi} \left[n_{l} B_{lu} \varphi(\nu - \nu_{0}) - n_{u} B_{ul} \chi(\nu - \nu_{0}) \right] \\ &= \frac{h\nu}{4\pi} n_{l} B_{lu} \varphi(\nu - \nu_{0}) \left[1 - \frac{n_{u} g_{l} \chi(\nu - \nu_{0})}{n_{l} g_{u} \varphi(\nu - \nu_{0})} \right] \end{aligned}$$

$$\alpha_{\nu_0}^l \equiv \int_0^\infty \alpha_\nu^l \, \mathrm{d}\nu = \frac{h\nu_0}{4\pi} \, \left(n_l B_{lu} - n_u B_{ul} \right)$$

$$\sigma_{\nu}^{l} = \frac{h\nu}{4\pi} B_{lu} \,\varphi(\nu - \nu_0)$$

$$\sigma_{\nu_0}^l \equiv \int_0^\infty \sigma_{\nu}^l \,\mathrm{d}\nu = \frac{h\nu_0}{4\pi} B_{lu} = \frac{\pi e^2}{m_e c} f_{lu} = 0.02654 \,f_{lu} \quad \mathrm{cm}^2 \,\mathrm{Hz}$$

$$A_{ul} \sim \frac{g_l}{g_u} f_{lu} \left(\Delta E_{ul} \right)^2 \qquad \qquad A_{ul} = 6.67 \times 10^{13} \frac{g_l}{g_u} \frac{f_{lu}}{\lambda^2} \ s^{-1}$$

Volume coefficients

Emission

$$j_{\nu}^{l} = \frac{h\nu}{4\pi} n_{u} A_{ul} \,\psi(\nu - \nu_{0}) \qquad \qquad j_{\nu_{0}}^{l} = \int_{0}^{\infty} j_{\nu}^{l} \,\mathrm{d}\nu = \frac{h\nu_{0}}{4\pi} n_{u} A_{ul}$$

Source function

$$S_{\nu}^{l} \equiv j_{\nu}^{l} / \alpha_{\nu}^{l} = \frac{n_{u} A_{ul} \psi(\nu - \nu_{0})}{n_{l} B_{lu} \varphi(\nu - \nu_{0}) - n_{u} B_{ul} \chi(\nu - \nu_{0})}$$

$$S_{\nu}^{l} = \frac{\frac{A_{ul}}{B_{ul}}\frac{\psi}{\varphi}}{\frac{n_{l}}{n_{u}}\frac{B_{lu}}{B_{ul}} - \frac{\chi}{\varphi}} = \frac{2h\nu^{3}}{c^{2}}\frac{\psi/\varphi}{\frac{g_{u}n_{l}}{g_{l}n_{u}} - \frac{\chi}{\varphi}}.$$

$$\varphi(\nu - \nu_0) = \psi(\nu - \nu_0) = \chi(\nu - \nu_0)$$
$$S_{\nu_0}^l = \frac{n_u A_{ul}}{n_l B_{lu} - n_u B_{ul}} = \frac{2h\nu_0^3}{c^2} \frac{1}{\frac{g_u n_l}{g_l n_u} - 1}.$$

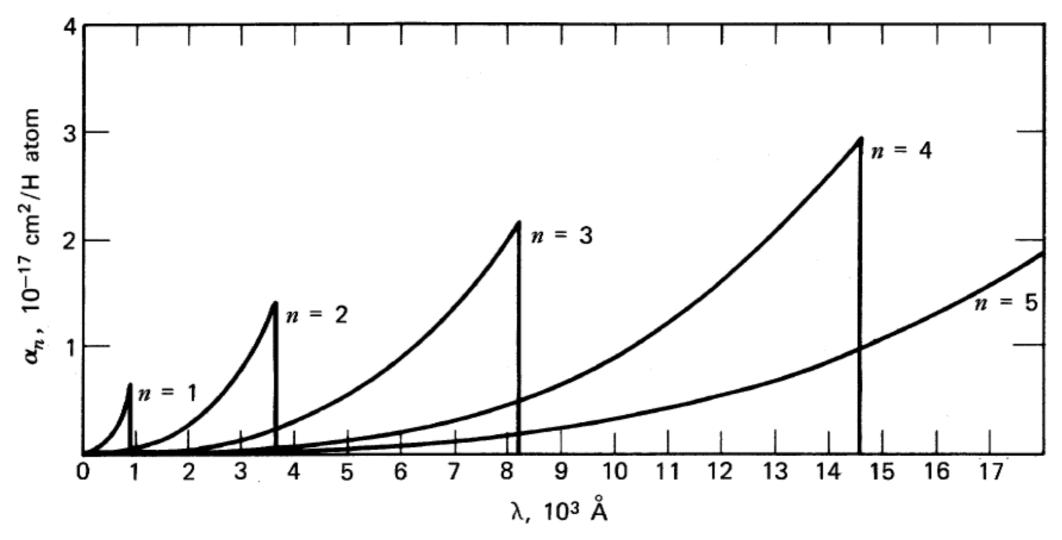
Continuum Transitions

Inelastic Processes

Bound-free transitions: Kramer's formula

$$\sigma_{\nu}^{\rm bf} = 2.815 \times 10^{29} \frac{Z^4}{n^5 \nu^3} g_{\rm bf} \qquad \nu \ge \nu_0$$

$$\alpha_{\nu}^{\rm bf} = \sigma_{\nu}^{\rm bf} \, n_i \, \left(1 - \, \mathrm{e}^{-h\nu/kT} \right)$$



Continuum Transitions

Inelastic Processes

Free-free transitions

$$\begin{split} S_{\nu} &= B_{\nu} \\ \sigma_{\nu}^{\mathrm{ff}} &= 3.7 \times 10^8 \, N_{\mathrm{e}} \frac{Z^2}{T^{1/2} \nu^3} \, g_{\mathrm{ff}} \\ \alpha_{\nu}^{\mathrm{ff}} &= \sigma_{\nu}^{\mathrm{ff}} \, N_{\mathrm{ion}} \left(1 - \, \mathrm{e}^{-h\nu/kT}\right) \\ & \\ \mathbf{Wien \ limit} \\ \alpha_{\nu}^{\mathrm{ff}} &\approx 3.7 \times 10^8 \, N_{\mathrm{e}} N_{\mathrm{ion}} \frac{Z^2}{T^{1/2} \nu^3} \, g_{\mathrm{ff}} \\ & \\ \mathbf{Rayleigh-Jeans \ limit} \end{split}$$

$$\alpha_{\nu}^{\rm ff} \approx 0.018 \, N_{\rm e} N_{\rm ion} \frac{Z^2}{T^{3/2} \nu^2} g_{\rm ff}$$

Continuum Transitions

Elastic Processes

Thomson scattering

 $\sigma_{\nu}^{\mathrm{T}} \equiv \sigma^{\mathrm{T}} = \frac{8\pi}{3} r_{\mathrm{e}}^{2} = 6.65 \times 10^{-25} \mathrm{~cm}^{2}$ $\alpha_{\nu}^{\mathrm{T}} = \sigma^{\mathrm{T}} N_{\mathrm{e}}$

Rayleigh scattering

$$\sigma_{\nu}^{\mathrm{R}} \approx f_{lu} \, \sigma^{\mathrm{T}} \left(\frac{\nu}{\nu_0} \right)^4 \qquad \qquad \nu \ll \nu_0$$
$$\alpha_{\nu}^{\mathrm{R}} = \sigma_{\nu}^{\mathrm{R}} \, N_{\mathrm{H}}$$

$$S_{\nu_0}^l = B_{\nu_0}$$

Matter in LTE

Maxwell distribution

$$\left[\frac{n(v_x)}{N} \,\mathrm{d}v_x\right]_{\mathrm{LTE}} = \left(\frac{m}{2\pi kT}\right)^{1/2} \,\mathrm{e}^{-(1/2)mv_x^2/kT} \,\mathrm{d}v_x$$
$$\left[\frac{n(v)}{N} \,\mathrm{d}v\right]_{\mathrm{LTE}} = \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi v^2 \,\mathrm{e}^{-(1/2)mv^2/kT} \,\mathrm{d}v$$
$$v_p = \sqrt{2kT/m}$$
$$\langle v \rangle = \sqrt{3kT/m}.$$

Matter in LTE

Boltzmann distribution

$$\left[\frac{n_{r,s}}{n_{r,t}}\right]_{\text{LTE}} = \frac{g_{r,s}}{g_{r,t}} e^{-(\chi_{r,s} - \chi_{r,t})/kT}$$

Saha distribution

$$\left[\frac{n_{r+1,1}}{n_{r,1}}\right]_{\rm LTE} = \frac{1}{N_{\rm e}} \frac{2\,g_{r+1,1}}{g_{r,1}} \left(\frac{2\pi m_{\rm e}kT}{h^2}\right)^{3/2} \,{\rm e}^{-\chi_r/kT} \quad \chi_r = h\nu_{\rm threshold}$$

$$\left[\frac{N_{r+1}}{N_r}\right]_{\rm LTE} = \frac{1}{N_{\rm e}} \frac{2U_{r+1}}{U_r} \left(\frac{2\pi m_{\rm e}kT}{h^2}\right)^{3/2} \,\mathrm{e}^{-\chi_r/kT}$$

$$U_r \equiv \sum_s g_{r,s} \,\mathrm{e}^{-\chi_{r,s}/kT}$$

Matter in LTE

Saha-Boltzmann distribution

$$\left[\frac{n_c}{n_i}\right]_{\rm LTE} = \frac{1}{N_{\rm e}} \frac{2\,g_c}{g_i} \left(\frac{2\pi m_{\rm e}kT}{h^2}\right)^{3/2} \,{\rm e}^{-\chi_{ci}/kT}$$

$$\chi_{ci} = \chi_r - \chi_{r,i} + \chi_{r+1,c} = h\nu_{\text{threshold}}$$

Radiation in LTE

Planck function

$$\begin{bmatrix} S_{\nu}^{l} \end{bmatrix}_{\text{LTE}} = \frac{2h\nu^{3}}{c^{2}} \frac{1}{\begin{bmatrix} g_{u}n_{l} \\ g_{l}n_{u} \end{bmatrix}}_{\text{LTE}} - 1$$
$$= \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{h\nu/kT} - 1} \equiv B_{\nu}(T)$$

Wien and Rayleigh-Jeans approximations

$$B_{\nu}(T) \approx \frac{2h\nu^3}{c^2} e^{-h\nu/kT} \qquad \exp(h\nu/kT) \gg 1$$

$$B_{\nu}(T) \approx \frac{2\nu^2 kT}{c^2}$$

$$\exp(h\nu/kT) - 1 \approx h\nu/kT$$

Radiation in LTE

Stefan-Boltzmann law

 $B(T) = \int_0^\infty B_\nu \,\mathrm{d}\nu = \frac{\sigma}{\pi} T^4$ $\sigma = \frac{2\pi^5 k^4}{15 h^3 c^2} = 5.67 \times 10^{-5} \text{ erg cm}^{-2} \text{ K}^{-4} \text{ s}^{-1}$ **Induced** emission $\left[1 - \frac{n_u B_{ul} \chi(\nu - \nu_0)}{n_l B_{lu} (\nu - \nu_0)}\right]_{\text{LTE}} = 1 - e^{-h\nu_0/kT}$ Line extinction $\left[\alpha_{\nu}^{l}\right]_{\rm LTE} = \frac{\pi e^2}{m_{e}} n_l^{\rm LTE} f_{lu} \varphi(\nu - \nu_0) \left[1 - e^{-h\nu_0/kT}\right]$

 $S_{\nu}^{l}(\vec{r}) = B_{\nu}[T(\vec{r})] \qquad I_{\nu}(\vec{r},\vec{l}) \neq B_{\nu}[T(\vec{r})] \qquad J_{\nu}(\vec{r}) \neq B_{\nu}[T(\vec{r})] \qquad \mathcal{F}_{\nu}(\vec{r}) \neq 0$

Statistical equilibrium

Rate equations

$$\frac{\mathrm{d}n_i(\vec{r})}{\mathrm{d}t} = \sum_{j \neq i}^N n_j(\vec{r}) P_{ji}(\vec{r}) - n_i(\vec{r}) \sum_{j \neq i}^N P_{ij}(\vec{r}) = 0$$
$$P_{ij} = R_{ij} + C_{ij}$$
$$R_{ij} = A_{ij} + B_{ij} \overline{J}_{\nu_0}$$
Transport equations

$$\mu \frac{\mathrm{d}I_{\nu}(\vec{r},\mu)}{\mathrm{d}\tau_{\nu}(\vec{r})} = -S_{\nu}(\vec{r}) + I_{\nu}(\vec{r},\mu)$$

NLTE descriptions

Departure coefficients

$$b_l = n_l / n_l^{\text{LTE}}$$
 $b_u = n_u / n_u^{\text{LTE}}$

Bound-bound source function

$$S_{\nu}^{l} = \frac{2h\nu^{3}}{c^{2}} \frac{\psi/\varphi}{\frac{b_{l}}{b_{u}}} e^{h\nu/kT} - \frac{\chi}{\varphi}$$
$$S_{\nu_{0}}^{l} = \frac{2h\nu_{0}^{3}}{c^{2}} \frac{1}{\frac{b_{l}}{b_{u}}} e^{h\nu_{0}/kT} - 1$$
$$\chi_{\nu} = \psi_{\nu} = \varphi_{\nu}$$

$$S_{\nu_0}^l \approx \frac{b_u}{b_l} B_{\nu_0}$$

 $(b_l/b_u)\exp(h\nu/kT)\gg 1$

NLTE descriptions

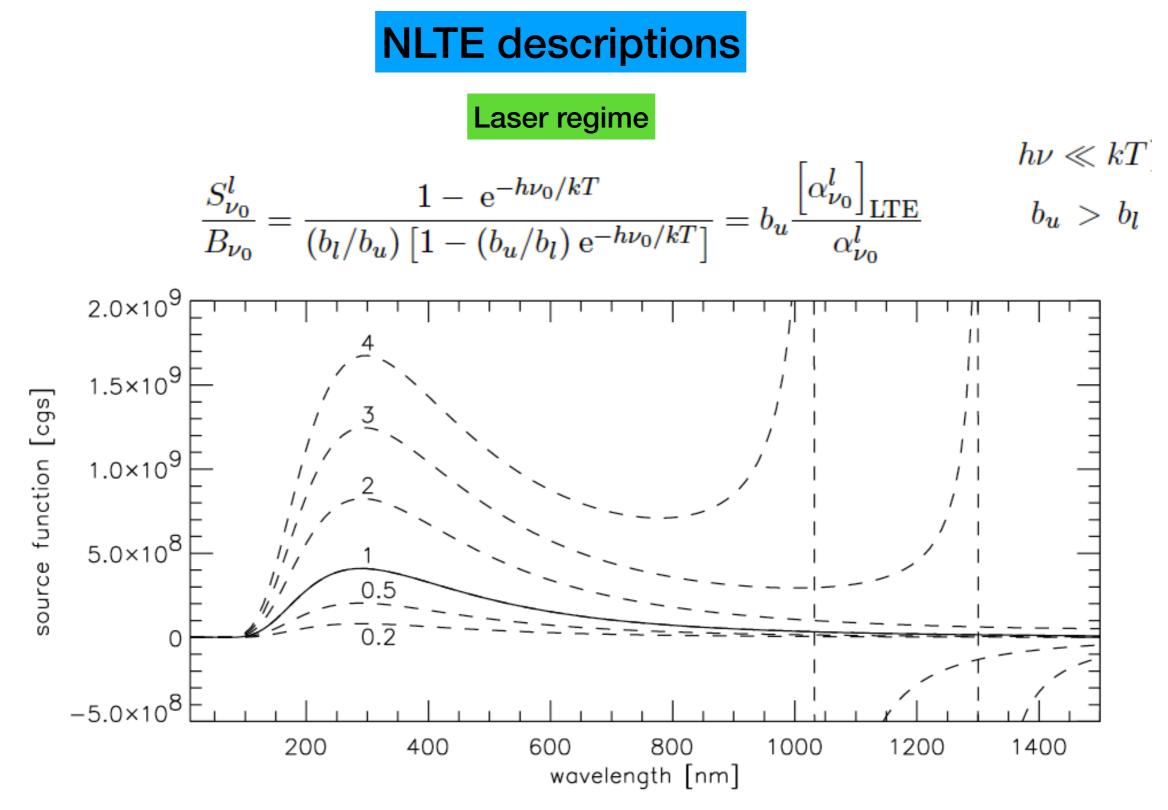
Bound-bound extinction

$$\begin{aligned} \alpha_{\nu}^{l} &= \frac{h\nu}{4\pi} b_{l} n_{l}^{\text{LTE}} B_{lu} \varphi(\nu - \nu_{0}) \left[1 - \frac{b_{u} n_{u}^{\text{LTE}} B_{ul} \chi}{b_{l} n_{l}^{\text{LTE}} B_{lu} \varphi} \right] \\ &= \frac{h\nu}{4\pi} b_{l} n_{l}^{\text{LTE}} B_{lu} \varphi(\nu - \nu_{0}) \left[1 - \frac{b_{u} \chi}{b_{l} \varphi} e^{-h\nu/kT} \right] \\ &= b_{l} n_{l}^{\text{LTE}} \sigma_{\nu}^{l} \left[1 - \frac{b_{u} \chi}{b_{l} \varphi} e^{-h\nu/kT} \right] \\ &= \frac{\pi e^{2}}{m_{e}c} b_{l} n_{l}^{\text{LTE}} f_{lu} \varphi(\nu - \nu_{0}) \left[1 - \frac{b_{u} \chi}{b_{l} \varphi} e^{-h\nu/kT} \right] \\ &\alpha_{\nu}^{l} \approx b_{l} \left[\alpha_{\nu}^{l} \right]_{\text{LTE}} \qquad \chi/\varphi = 1 \end{aligned}$$

NLTE descriptions

Bound-bound extinction

$$\begin{aligned} \alpha_{\nu_0}^l &= \frac{h\nu_0}{4\pi} b_l n_l^{\text{LTE}} B_{lu} \left[1 - \frac{b_u}{b_l} e^{-h\nu_0/kT} \right] \\ &= \frac{\pi e^2}{m_e c} b_l n_l^{\text{LTE}} f_{lu} \left[1 - \frac{b_u}{b_l} e^{-h\nu_0/kT} \right] \\ &\approx b_l \left[\alpha_{\nu_0}^l \right]_{\text{LTE}} . \\ &\qquad j_{\nu}^l = b_u \left[\alpha_{\nu}^l \right]_{\text{LTE}} B_{\nu} \end{aligned}$$



NLTE descriptions

Bound-free source function

$$S_{\nu}^{\rm bf} = \frac{2h\nu^3}{c^2} \frac{1}{\frac{b_i}{b_c}} e^{h\nu/kT} - 1$$

$$S_{\nu}^{\rm bf}\approx \frac{b_c}{b_i}B_{\nu}$$

Bound-free extinction

$$\alpha_{\nu}^{\rm bf} = b_i \, n_i^{\rm LTE} \sigma_{ic}(\nu) \left(1 - \frac{b_c}{b_i} \, \mathrm{e}^{-h\nu/kT}\right)$$

Bund-free emission

$$j_{\nu}^{\rm bf} = \alpha_{\nu}^{\rm bf} S_{\nu}^{\rm bf} = b_c \left[\alpha_{\nu}^{\rm bf} \right]_{\rm LTE} B_{\nu}$$

NLTE descriptions

Free-free source function, extinction and emission

$$S_{\nu}^{\text{ff}} = B_{\nu}$$

$$\alpha_{\nu}^{\text{ff}} = b_{c} n_{c}^{\text{LTE}} \sigma_{\nu}^{\text{ff}} \left(1 - e^{-h\nu/kT}\right)$$

$$j_{\nu}^{\text{ff}} = b_{c} \left[\alpha_{\nu}^{\text{ff}}\right]_{\text{LTE}} B_{\nu}$$

NLTE descriptions

Formal temperatures

Excitation temperature

$$\frac{n_u}{n_l} \equiv \frac{g_u}{g_l} \,\mathrm{e}^{-h\nu/kT_{\mathrm{exc}}}$$

$$S_{\nu_0}^l = \frac{2h\nu_0^3}{c^2} \frac{1}{\frac{g_u n_l}{g_l n_u} - 1} = \frac{2h\nu_0^3}{c^2} \frac{1}{\frac{e^{h\nu_0/kT_{\text{exc}}} - 1}{e^{h\nu_0/kT_{\text{exc}}} - 1}} = B_{\nu_0}(T_{\text{exc}})$$

Ionisation temperature

$$S_{\nu}^{\text{bf}} \equiv \frac{2h\nu^3}{c^2} \frac{1}{\mathrm{e}^{h\nu/kT_{\text{ion}}} - 1} = B_{\nu}(T_{\text{ion}})$$

NLTE descriptions

Formal temperatures

Radiation temperature

 $B_{\nu}(T_{\rm rad}) \equiv J_{\nu}$

Brightness temperature

 $B_{\nu}(T_{\rm b}) \equiv I_{\nu}$

 $T_{\rm b} = T_{\rm e}(\tau_{\nu} = \mu)$

Effective temperature

 $\pi B(T_{\text{eff}}) = \sigma T_{\text{eff}}^4 \equiv \mathcal{F}_{\text{surface}}$

Coherent scattering

Two-levels atoms

- Photon scattering
- Photon creation
- Photon destruction

Coherently scattering medium

$$\alpha_{\nu}^{l} = \alpha_{\nu}^{a} + \alpha_{\nu}^{s}$$

Destruction probability

$$\varepsilon_{\nu} \equiv \frac{\alpha_{\nu}^{\rm a}}{\alpha_{\nu}^{\rm a} + \alpha_{\nu}^{\rm s}}$$

$$1 - \varepsilon_{\nu} = \frac{\alpha_{\nu}^{\rm s}}{\alpha_{\nu}^{\rm a} + \alpha_{\nu}^{\rm s}}$$

Coherent scattering

Effective path, thickens, depth

 $l_{\nu}^{*} \approx \sqrt{N} \, l_{\nu}$ $l_{\nu} = \frac{\langle \tau_{\nu} \rangle}{\alpha_{\nu}} = \frac{1}{\alpha_{\nu}^{a} + \alpha_{\nu}^{s}}$ $N = 1/\varepsilon_{\nu}$ $l_{\nu}^{*} \approx l_{\nu}/\sqrt{\varepsilon_{\nu}}$ $\tau_{\nu}^{*} = \sqrt{\varepsilon_{\nu}} \, \tau_{\nu}$

 $\mathrm{d}\tau_{\nu}^* = \sqrt{\varepsilon_{\nu}} \,\mathrm{d}\tau_{\nu}$

Coherent scattering

Source function

 $j_{\nu}^{\mathbf{a}} = \alpha_{\nu}^{\mathbf{a}} B_{\nu}$

$$j_{\nu}^{\rm s} = \alpha_{\nu}^{\rm s} J_{\nu}$$

$$S_{\nu}^{l} = \frac{j_{\nu}^{a} + j_{\nu}^{s}}{\alpha_{\nu}^{a} + \alpha_{\nu}^{s}} = (1 - \varepsilon_{\nu}) J_{\nu} + \varepsilon_{\nu} B_{\nu}$$
$$S_{\nu_{0}}^{l} = (1 - \varepsilon_{\nu_{0}}) \overline{J}_{\nu_{0}}^{\varphi} + \varepsilon_{\nu_{0}} B_{\nu_{0}}$$
$$\varepsilon_{\nu_{0}} \equiv \frac{\alpha_{\nu_{0}}^{a}}{\alpha_{\nu_{0}}^{a} + \alpha_{\nu_{0}}^{s}}$$

Coherent scattering

Transport equation

 $dI_{\nu} = -\alpha_{\nu}^{a}I_{\nu} ds - \alpha_{\nu}^{s}I_{\nu} ds + \alpha_{\nu}^{a}B_{\nu} ds + \alpha_{\nu}^{s}J_{\nu} ds$ $d\tau_{\nu} \equiv \alpha_{\nu}^{l} ds = (\alpha_{\nu}^{a} + \alpha_{\nu}^{s}) ds$ $\frac{dI_{\nu}}{d\tau_{\nu}} = \frac{dI_{\nu}}{(\alpha_{\nu}^{a} + \alpha_{\nu}^{s}) ds} = S_{\nu}^{l} - I_{\nu}$ $\mu \frac{dI_{\nu}}{d\tau_{\nu}} = I_{\nu} - S_{\nu}^{l}$ $S_{\nu}^{l} = S_{\nu_{0}}^{l}$

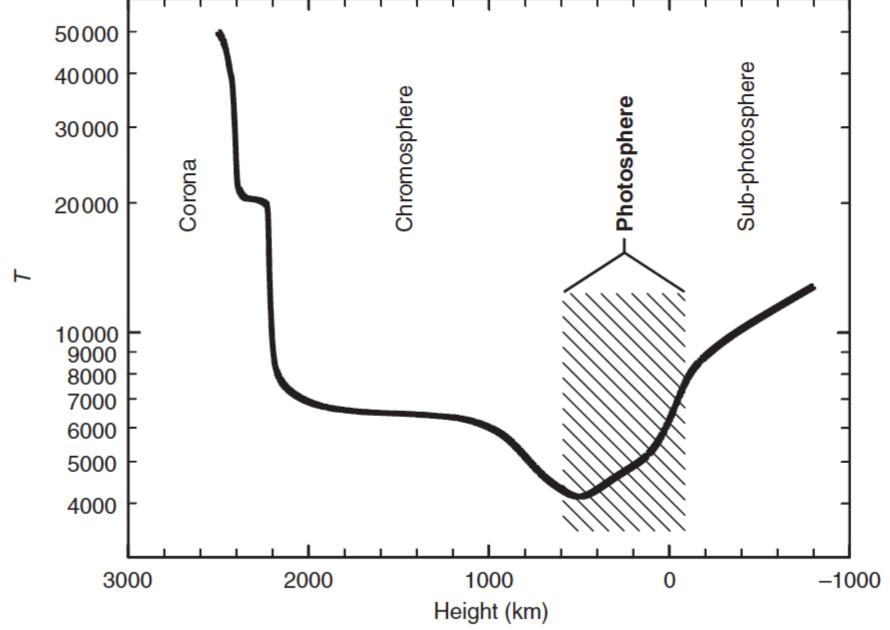
Stellar Atmospheres

Ricardo Chávez Murillo

May 2021

What is a Stellar Atmosphere?

• It is a transition region from the stellar interior to the interstellar medium.



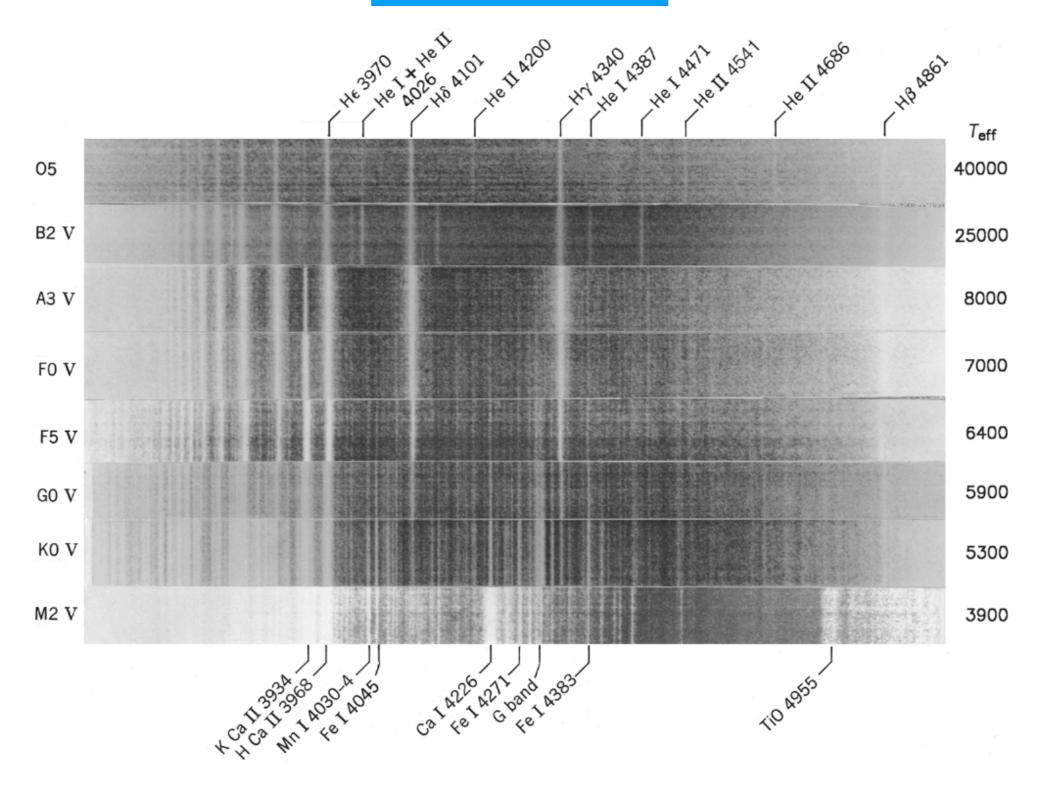
Stellar photosphere

Surface gravity

$$g = g_{\odot} \frac{\mathcal{M}}{R^2}$$
 $g_{\odot} = 2.740 \times 10^4 \,\mathrm{cm/s^2}$

$$L = 4\pi R^2 \int_0^\infty \widetilde{\mathcal{S}}_\nu \mathrm{d}\nu = 4\pi R^2 \sigma T_{\mathrm{eff}}^4$$

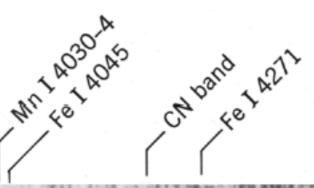
Spectral types

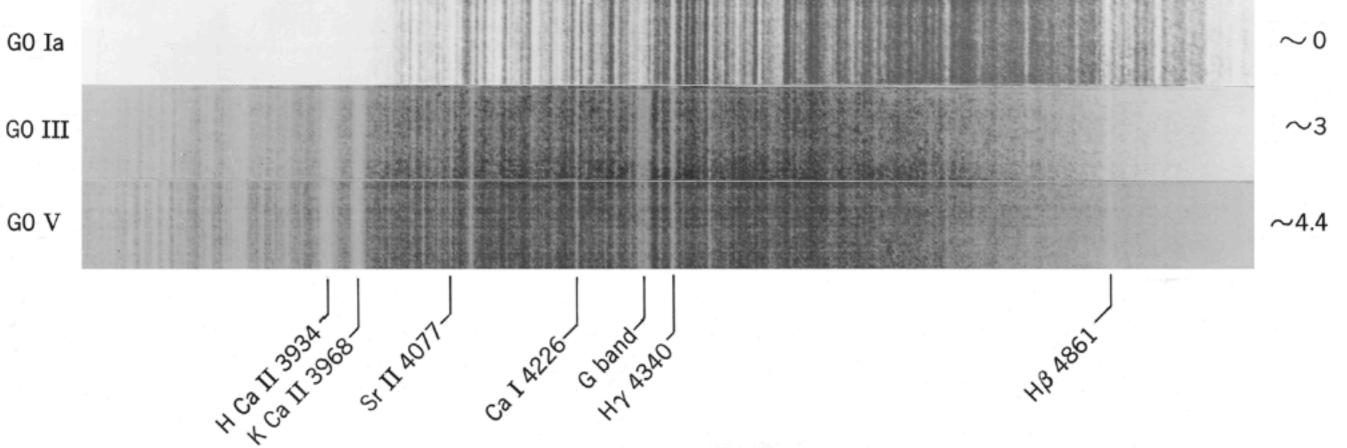


Luminosity classification

0, I, Ia, Ib, II, III, IV, and V

Log g





Spectral classification

Suffix notation

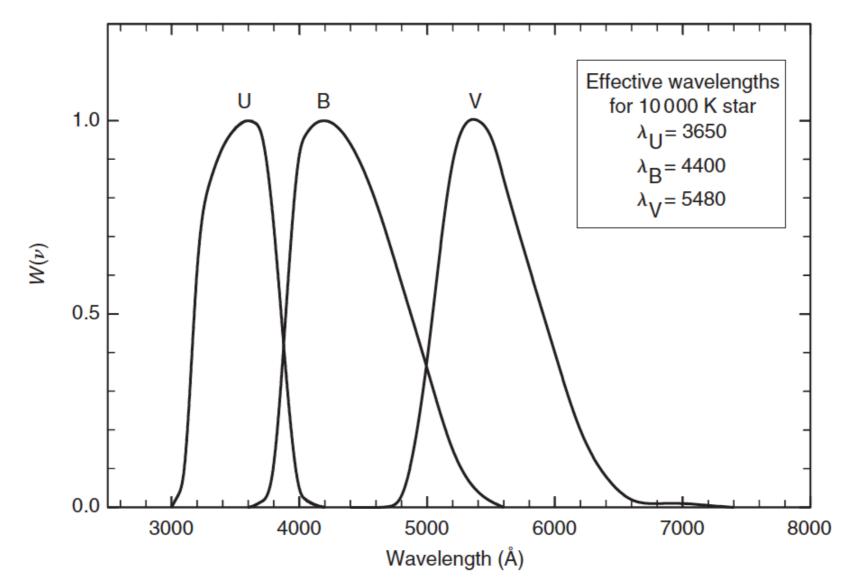
~	·
e	Emission lines are present
f	He II λ 4686 and/or C III λ 4650 in emission; mostly for O stars
k	Ca II K line when unexpected, e.g., interstellar in hot stars
m	Metallic; metal lines are stronger than normal
n	Nebulous; lines are broad and shallow; usually high rotation
nn	Very nebulous!
р	Peculiar; spectrum is abnormal
q	Queer; unusual emission; evolved from Q novae designation (archaic)
S	Sharp; lines are sharp, usually for early-type stars with low rotation
V	Variable; spectrum changes with time
W	Wolf-Rayet bands present (archaic)

Old prefix notation

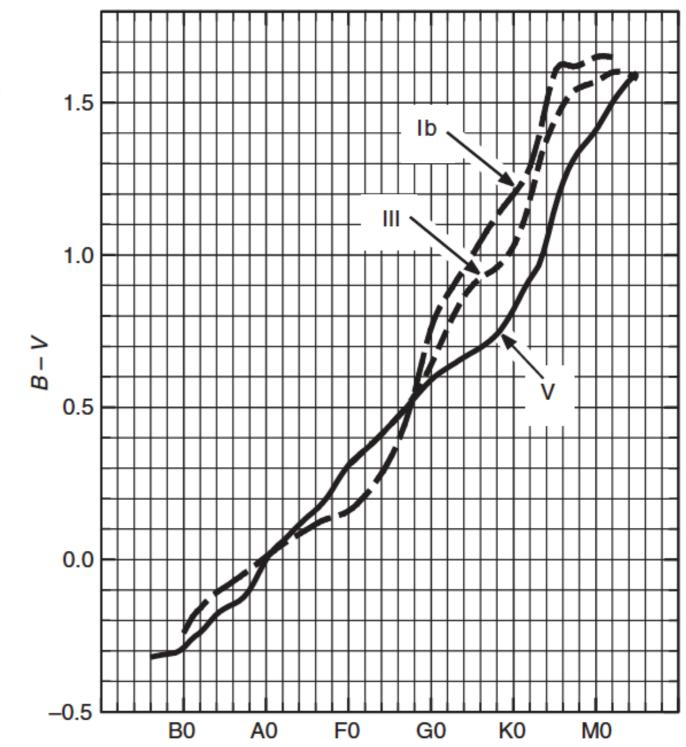
c for supergiants; g for giants; d for dwarfs

Magnitudes and color indices

$$m = -2.5 \log \int_0^\infty F_\nu W(\nu) \,\mathrm{d}\nu + \mathrm{constant}$$



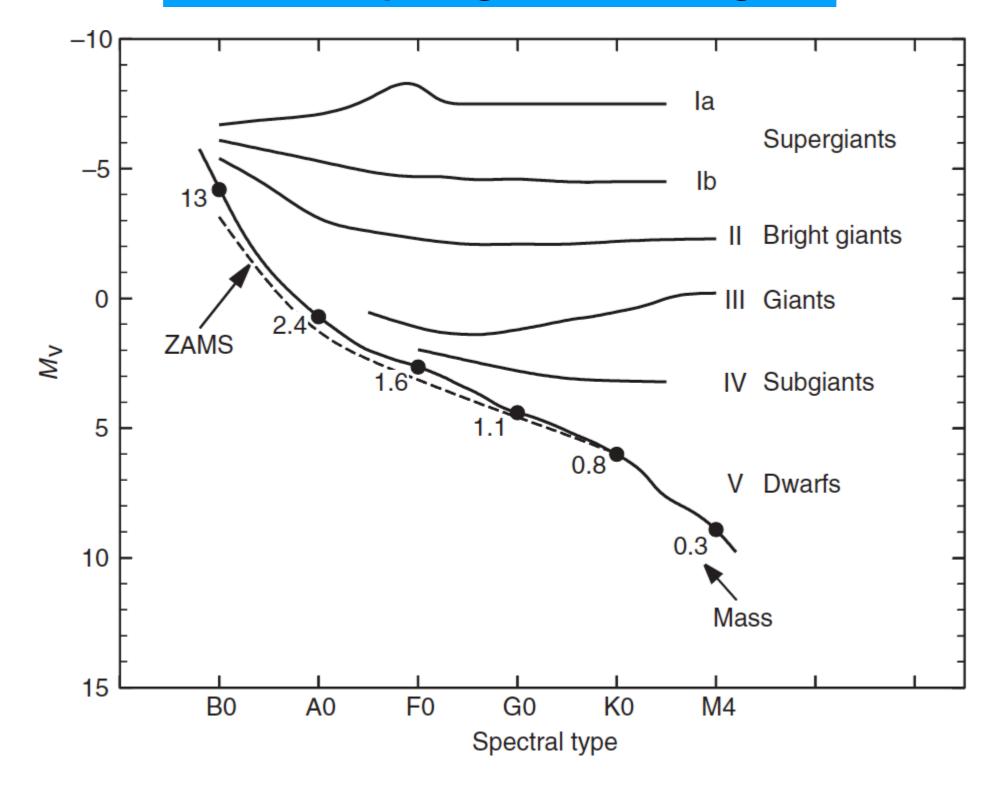
Magnitudes and color indices



$$B - V = -2.5 \log \left(\frac{\int F_{\nu} W_B(\nu) \,\mathrm{d}\nu}{\int F_{\nu} W_V(\nu) \,\mathrm{d}\nu} \right) + 0.710$$

$$U - B = -2.5 \log \left(\frac{\int F_{\nu} W_U(\nu) \,\mathrm{d}\nu}{\int F_{\nu} W_B(\nu) \,\mathrm{d}\nu} \right) - 1.093$$

The Hertzsprung-Russell diagram



Formal Solutions

General Transport Equation

Formal Solutions

Exponential integrals

 $S_{\nu}(\tau_{\nu}) \exp(-\tau_{\nu}) \to 0 \quad \tau_{\nu} \to \infty$ $I_{\nu}^{-}(0,\mu) = 0$

$$I_{\nu}^{+}(\tau_{\nu},\mu) = + \int_{\tau_{\nu}}^{\infty} S_{\nu}(t_{\nu}) e^{-(t_{\nu}-\tau_{\nu})/\mu} dt_{\nu}/\mu$$
$$I_{\nu}^{-}(\tau_{\nu},\mu) = + \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) e^{-(t_{\nu}-\tau_{\nu})/\mu} dt_{\nu}/|\mu|$$

$$\int_{-1}^{+1} I_{\nu}(\tau_{\nu},\mu) \mu^{n} d\mu$$
$$= \int_{0}^{+1} \mu^{n} d\mu \int_{\tau_{\nu}}^{\infty} S_{\nu}(t_{\nu}) e^{-(t_{\nu}-\tau_{\nu})/\mu} \frac{dt_{\nu}}{\mu} + \int_{-1}^{0} \mu^{n} d\mu \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) e^{-(\tau_{\nu}-t_{\nu})/-\mu} \frac{dt_{\nu}}{-\mu}$$

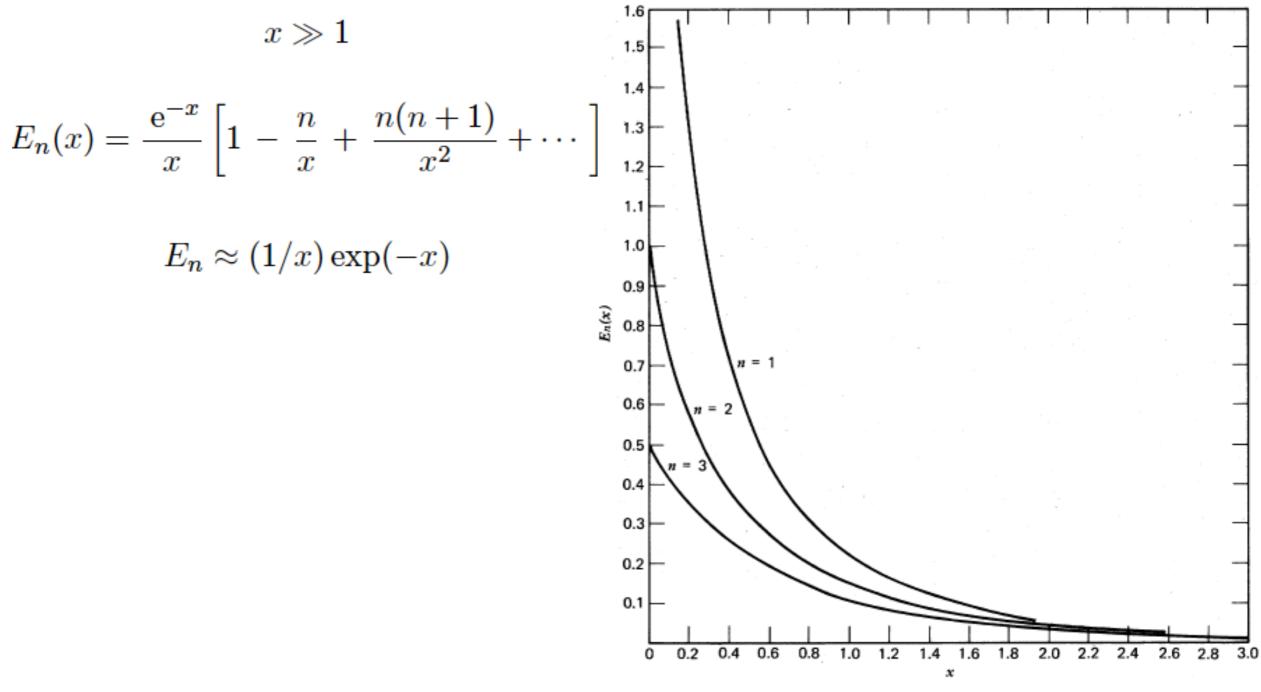
Formal Solutions

Exponential integrals

 $\int I I_{\nu}(\tau_{\nu},\mu) \,\mu^n \,\mathrm{d}\mu$ $= \int_{0}^{+1} \mu^{n} \,\mathrm{d}\mu \,\int_{\tau}^{\infty} S_{\nu}(t_{\nu}) \,\mathrm{e}^{-(t_{\nu} - \tau_{\nu})/\mu} \,\frac{\mathrm{d}t_{\nu}}{\mu} + \int_{-1}^{0} \mu^{n} \,\mathrm{d}\mu \,\int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) \,\mathrm{e}^{-(\tau_{\nu} - t_{\nu})/-\mu} \,\frac{\mathrm{d}t_{\nu}}{-\mu}$ $1/\mu = w |\mathbf{d}\mu/\mathbf{d}w| = \mu/w$ $\int_{-1}^{+1} I_{\nu}(\tau_{\nu},\mu)\mu^{n} \,\mathrm{d}\mu$ $= \int_{-\infty}^{\infty} S_{\nu}(t_{\nu}) dt_{\nu} \int_{-\infty}^{1} \frac{e^{-(t_{\nu}-\tau_{\nu})w}}{w^{n+1}} dw + (-1)^{n} \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) dt_{\nu} \int_{+1}^{\infty} \frac{e^{-(\tau_{\nu}-t_{\nu})w}}{w^{n+1}} dw$ $= \int_{-\infty}^{\infty} S_{\nu}(t_{\nu}) E_{n+1}(t_{\nu} - \tau_{\nu}) dt_{\nu} + (-1)^{n} \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) E_{n+1}(\tau_{\nu} - t_{\nu}) dt_{\nu},$ $E_n(x) \equiv \int_0^\infty \frac{\mathrm{e}^{-xw}}{w^n} \,\mathrm{d}w = \int_0^1 \,\mathrm{e}^{-x/\mu} \,\mu^{n-1} \,\frac{\mathrm{d}\mu}{w}$

Formal Solutions

Exponential integrals



Formal Solutions

$$\begin{aligned} J_{\nu}(\tau_{\nu}) &\equiv \frac{1}{2} \int_{-1}^{+1} I_{\nu}(\tau_{\nu}, \mu) \, \mathrm{d}\mu \\ &= \frac{1}{2} \int_{\tau_{\nu}}^{\infty} S_{\nu}(t_{\nu}) \, E_{1}(t_{\nu} - \tau_{\nu}) \, \mathrm{d}t_{\nu} + \frac{1}{2} \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) \, E_{1}(\tau_{\nu} - t_{\nu}) \, \mathrm{d}t_{\nu} \\ &= \frac{1}{2} \int_{0}^{\infty} S_{\nu}(t_{\nu}) \, E_{1}(|t_{\nu} - \tau_{\nu}|) \, \mathrm{d}t_{\nu}, \end{aligned}$$

$$\begin{aligned} \mathcal{F}_{\nu}(\tau_{\nu}) &= \mathcal{F}_{\nu}^{+}(\tau_{\nu}) - \mathcal{F}_{\nu}^{-}(\tau_{\nu}) \\ &= 2\pi \int_{0}^{1} \mu I_{\nu}(\tau_{\nu}) \, \mathrm{d}\mu - 2\pi \int_{0}^{-1} \mu I_{\nu}(\tau_{\nu}) \, \mathrm{d}\mu \\ &= 2\pi \int_{\tau_{\nu}}^{\infty} S_{\nu}(t_{\nu}) \, E_{2}(t_{\nu} - \tau_{\nu}) \, \mathrm{d}t_{\nu} - 2\pi \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) \, E_{2}(\tau_{\nu} - t_{\nu}) \, \mathrm{d}t_{\nu} \end{aligned}$$

$$K_{\nu}(\tau_{\nu}) = \frac{1}{2} \int_{0}^{\infty} S_{\nu}(t_{\nu}) E_{3}(|t_{\nu} - \tau_{\nu}|) dt_{\nu}$$

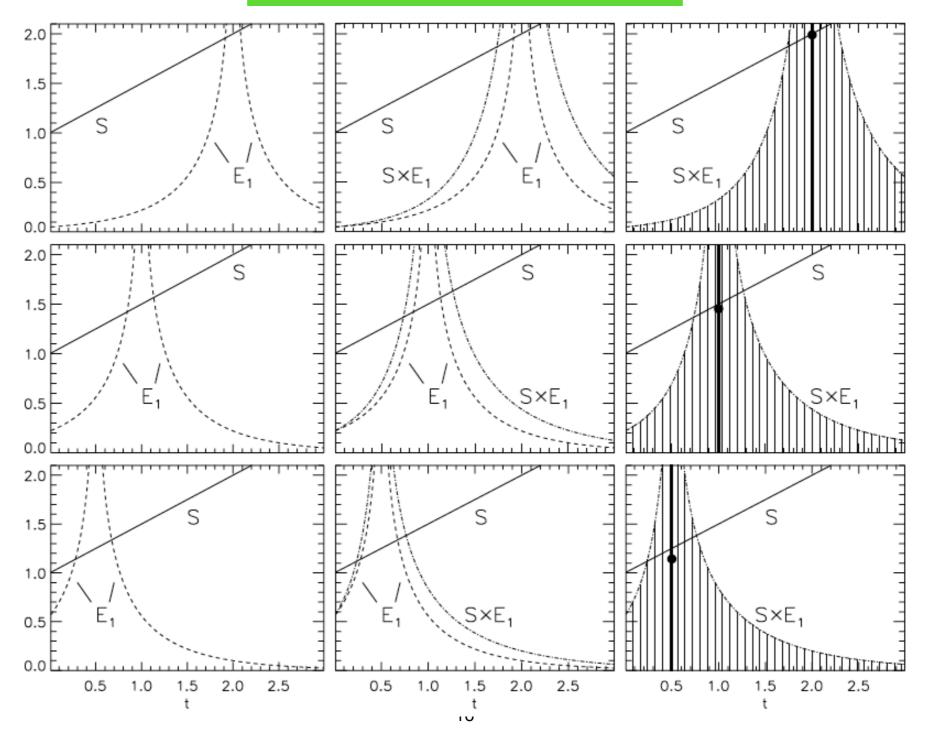
Formal Solutions

Schwarzschild-Milne equations

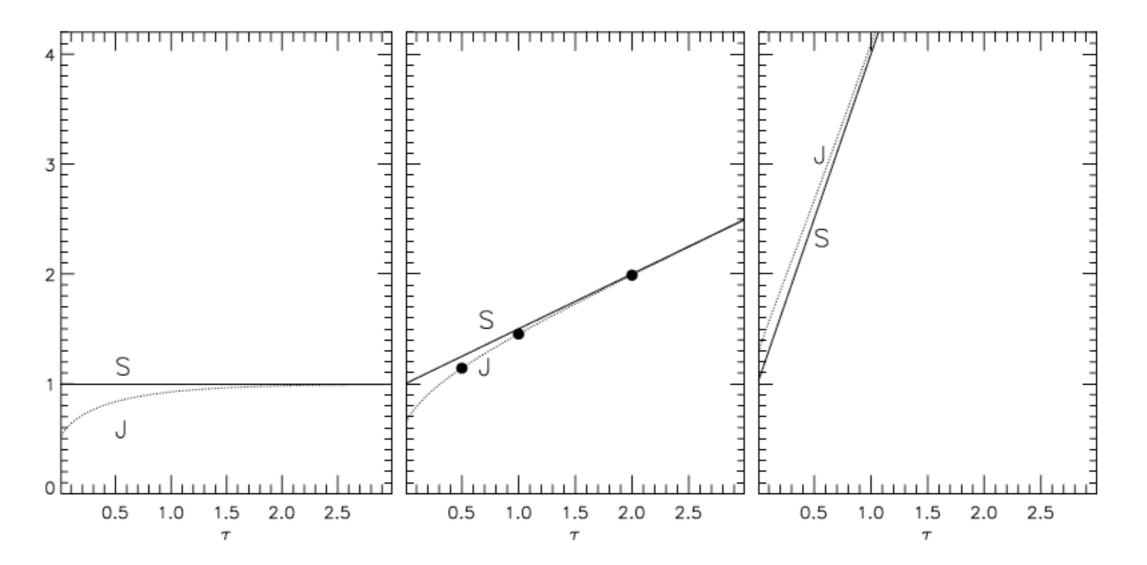
Surface values

 $I_{\nu}^{+}(0,\mu) = \int_{0}^{\infty} S_{\nu}(\tau_{\nu}) e^{-\tau_{\nu}/\mu} d\tau_{\nu}/\mu$ $\mathcal{F}_{\nu}^{+}(0) = 2\pi \int_{0}^{\infty} S_{\nu}(\tau_{\nu}) E_{2}(\tau_{\nu}) d\tau_{\nu}$

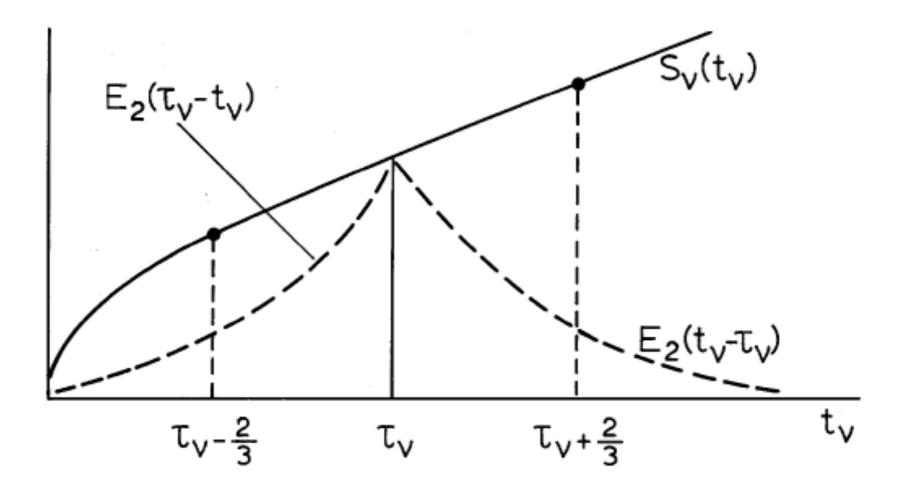
Formal Solutions



Formal Solutions



Formal Solutions



Formal Solutions

Operators

Laplace transform

$$\mathcal{L}_{1/\mu}[S_{\nu}(\tau_{\nu})] \equiv \int_{0}^{\infty} S_{\nu}(\tau_{\nu}) \,\mathrm{e}^{-\tau_{\nu}/\mu} \,\mathrm{d}\tau_{\nu}/\mu = I_{\nu}^{+}(0,\mu)$$

$$\begin{split} \mathbf{\Lambda}_{\tau}[f(t)] &\equiv \frac{1}{2} \int_{0}^{\infty} f(t) E_{1}(|t-\tau|) \,\mathrm{d}t \\ \mathbf{\Lambda}_{\tau}[1] &= 1 - \frac{1}{2} E_{2}(\tau) \\ \mathbf{\Lambda}_{\tau}[t] &= \tau + \frac{1}{2} E_{3}(\tau) \\ \mathbf{\Lambda}_{\tau}[t^{2}] &= \frac{2}{3} + \tau^{2} - E_{4}(\tau) \\ \mathbf{\Lambda}_{\tau}[t^{2}] &= \frac{1}{2} p! \left[\sum_{k=0}^{p} \frac{\tau^{k}}{k!} \delta_{\alpha} + (-1)^{p+1} E_{p+2}(\tau) \right] \\ \delta_{\alpha} &= 0 \text{ for even } \alpha \equiv p+1-k \text{ and } \delta_{\alpha} = 2/\alpha \text{ for odd } \alpha \end{split}$$

Formal Solutions

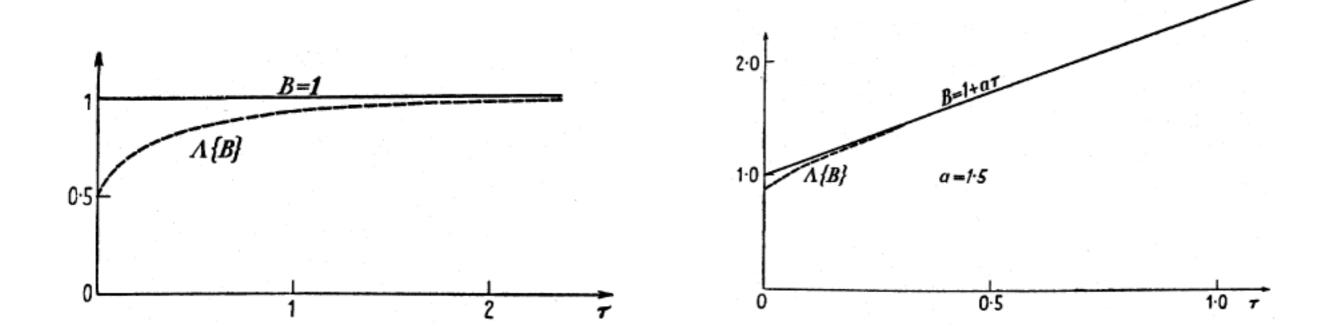
Operators

$$J_{\nu}(\tau_{\nu}) = \frac{1}{2} \int_0^\infty S_{\nu}(t_{\nu}) E_1(|t_{\nu} - \tau_{\nu}|) dt_{\nu} = \Lambda_{\tau_{\nu}}[S_{\nu}(t_{\nu})]$$

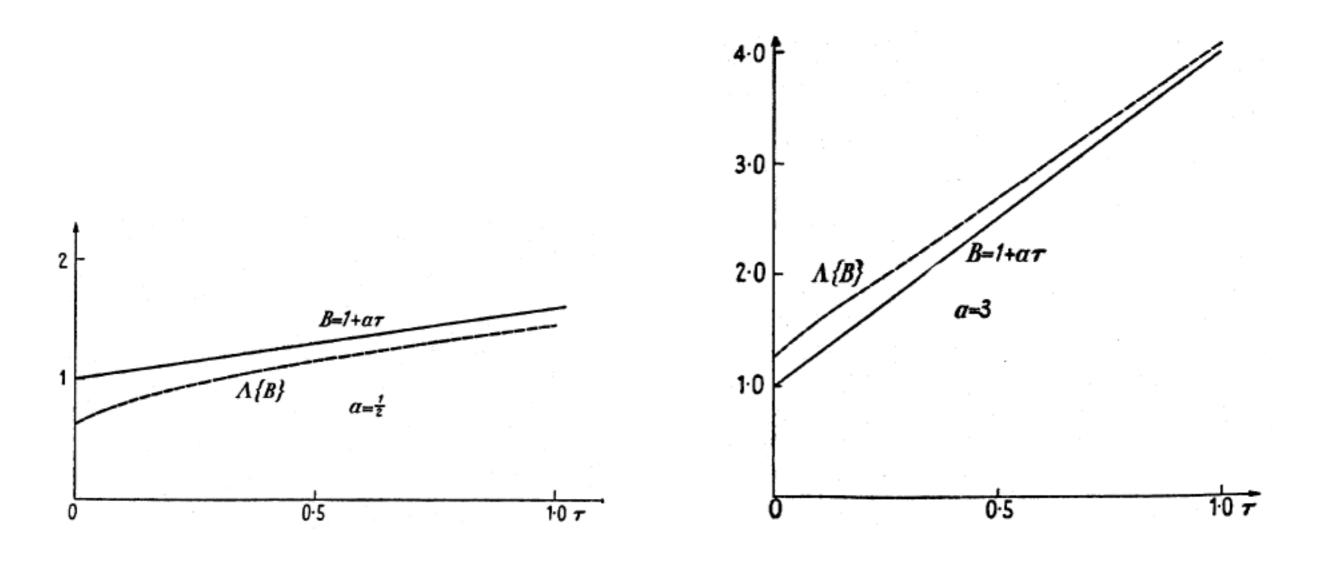
Phi and Chi operator

$$\chi_{\tau_{\nu}}[S_{\nu}(t_{\nu})] \equiv 2 \int_{0}^{\infty} S_{\nu}(t_{\nu}) E_{3}(|t_{\nu} - \tau_{\nu}|) dt_{\nu}$$
$$= 4 K_{\nu}(\tau_{\nu}),$$
$$\Phi_{\tau}[f(t)] = \frac{\mathrm{d}}{\mathrm{d}\tau} \chi_{\tau}[f(t)]$$

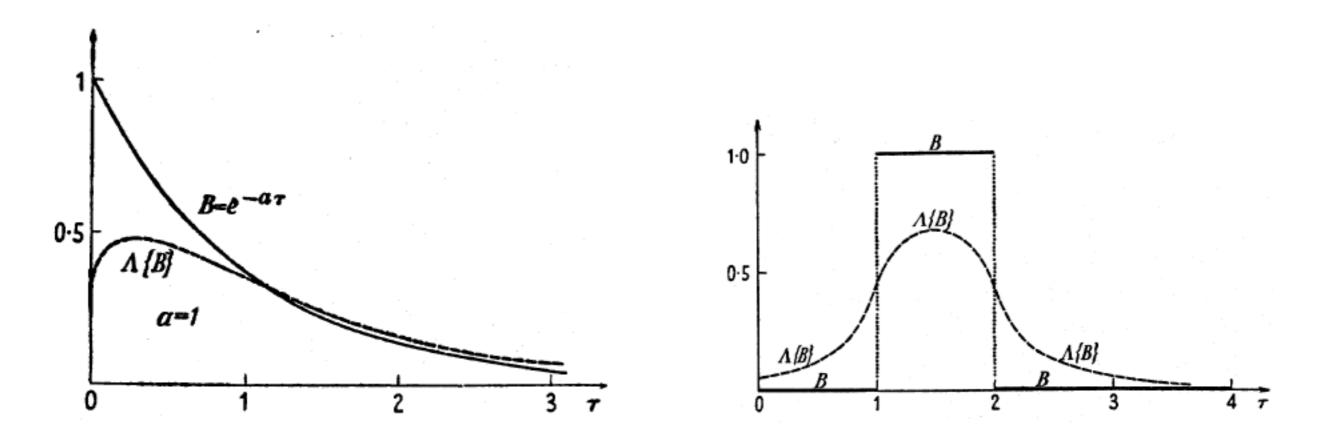
Formal Solutions



Formal Solutions

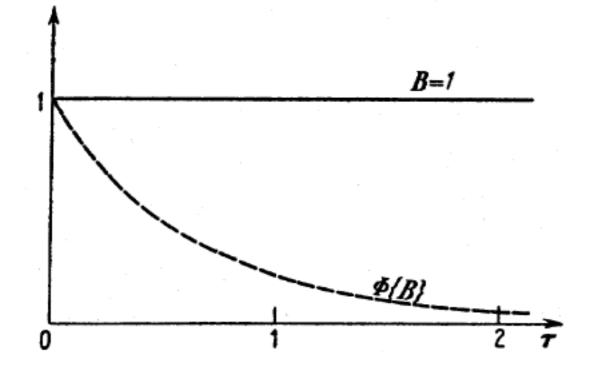


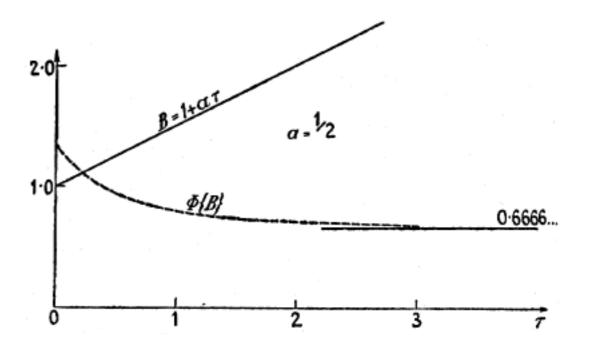
Formal Solutions



Formal Solutions

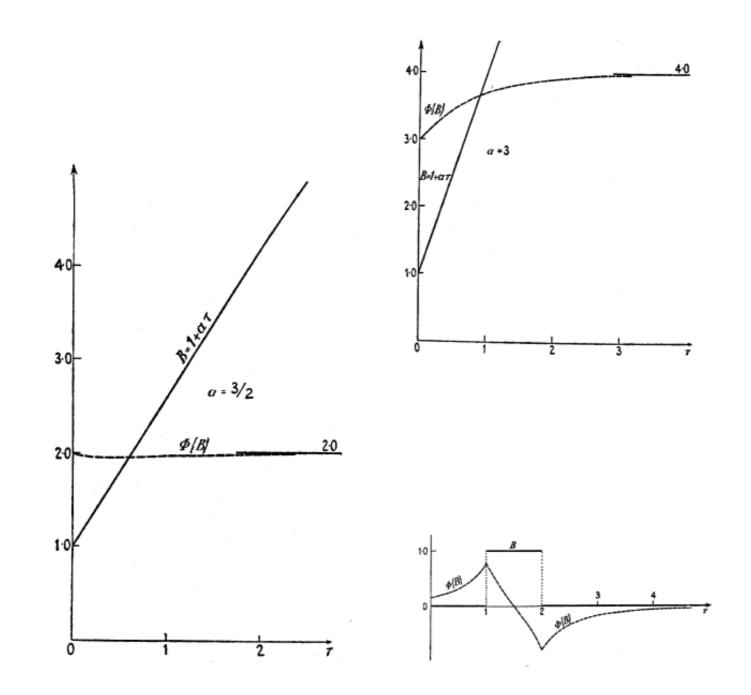
Classical Lambda operator





Formal Solutions

Classical Lambda operator



Formal Solutions

Generalised Lambda operators

$$I_{\nu}(\tau_{\nu},\mu) = \Lambda_{\mu\nu}[S_{\nu}(t_{\nu})]$$

$$J_{\nu}(\tau_{\nu}) = \Lambda_{\nu}[S_{\nu}(t_{\nu})],$$

$$\Lambda_{\nu} = \frac{1}{2} \int_{-1}^{+1} \Lambda_{\mu\nu} d\mu$$

$$\Lambda_{+\mu\nu}[S_{\nu}] = I_{\nu}^{+}(\tau_{\nu},\mu) = \int_{\tau_{\nu}}^{\infty} S_{\nu}(t_{\nu}) e^{-(t_{\nu}-\tau_{\nu})/\mu} dt_{\nu}/\mu$$

$$= e^{\tau_{\nu\mu}} \int_{\tau_{\nu\mu}}^{\infty} S_{\nu} e^{-t_{\nu\mu}} dt_{\nu\mu}$$

$$\begin{split} \mathbf{\Lambda}_{-\mu\nu}[S_{\nu}] &= I_{\nu}^{-}(\tau_{\nu}, -|\mu|) = \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) \,\mathrm{e}^{-(\tau_{\nu} - t_{\nu})/|\mu|} \,\mathrm{d}t_{\nu}/|\mu| \\ &= \mathrm{e}^{-\tau_{\nu\mu}} \int_{0}^{\tau_{\nu\mu}} S_{\nu} \,\mathrm{e}^{t_{\nu\mu}} \,\mathrm{d}t_{\nu\mu}, \end{split}$$

Approximate solutions

Approximations at the surface

Eddington-Barbier approximations

$$S_{\nu}(\tau_{\nu}) = \sum_{n=0}^{\infty} a_n \tau_{\nu}{}^n$$

$$\begin{split} I_{\nu}^{+}(0,\mu) &= \mathcal{L}_{1/\mu} \{S_{\nu}(\tau_{\nu})\} \\ &= \sum_{n=0}^{\infty} n! \, a_{n} \mu^{n} \\ J_{\nu}(\tau_{\nu}) &= \Lambda_{\nu} [S_{\nu}] \\ &= a_{0} \Lambda_{\nu} [1] + a_{1} \Lambda_{\nu} [t] + a_{2} \Lambda_{\nu} [t^{2}] + \cdots \\ &\approx a_{0} \left[1 - \frac{1}{2} E_{2}(\tau_{\nu}) \right] + a_{1} \left[\tau_{\nu} + \frac{1}{2} E_{3}(\tau_{\nu}) \right] + a_{2} \left[\frac{2}{3} + \tau_{\nu}^{2} - E_{4}(\tau_{\nu}) \right] \\ &\approx a_{0} + a_{1} \tau_{\nu} + a_{2} \tau_{\nu}^{2} + \frac{2}{3} a_{2} - \frac{a_{0}}{2} E_{2}(\tau_{\nu}) + \frac{a_{1}}{2} E_{3}(\tau_{\nu}) - a_{2} E_{4}(\tau_{\nu}) \\ &= a_{0} E_{3}(\tau_{\nu}) + a_{1} \left[\frac{4}{3} - 2 E_{4}(\tau_{\nu}) \right] + a_{2} \left[\frac{8}{3} \tau_{\nu} + 4 E_{5}(\tau_{\nu}) \right] + \cdots \end{split}$$

Approximate solutions

Approximations at the surface

Eddington-Barbier approximations

 $I_{\nu}^{+}(0,\mu) \approx a_{0} + a_{1}\mu$ $\approx S_{\nu}(\tau_{\nu} = \mu),$

$$J_{\nu}(0) \approx a_{0} + \frac{2a_{2}}{3} - \frac{a_{0}}{2} + \frac{a_{1}}{4} - \frac{a_{2}}{3}$$
$$\approx \frac{a_{0}}{2} + \frac{a_{1}}{4} + \frac{a_{2}}{3}$$
$$\approx \frac{1}{2}S_{\nu}(\tau_{\nu} = 1/2),$$
$$F_{\nu}(0) = a_{0} + \frac{2}{3}a_{1} + a_{2} + \cdots$$
$$\approx S_{\nu}(\tau_{\nu} = \frac{2}{3}),$$

Approximate solutions

Approximations at the surface

Second Eddington approximations

 $S_{\nu} = a_0$ $I^+_{\nu}(0,\mu) = S_{\nu} = a_0$ $\mu > 0$ $J_{\nu}(0) = S_{\nu}/2 = a_0/2 = I_{\nu}(0)/2$ $F_{\nu}(0) = S_{\nu} = I_{\nu}(0) = a_0$ $F_{\nu}(0) = 2J_{\nu}(0) = 4H_{\nu}(0)$ $\mathcal{F}_{\nu}(0) = 2\pi J_{\nu}(0)$ $F_{\nu}(0) \equiv 2 \int_{-1}^{+1} I_{\nu}(0,\mu) \mu \,\mathrm{d}\mu$ $= 2 \int_{0}^{1} I_{\nu}(0,\mu) \mu \,\mathrm{d}\mu$ $\approx 2 < I_{\nu}^{+}(0,\mu) > \int_{0}^{1} \mu \,\mathrm{d}\mu$ $\approx 2 J_{\nu}(0),$

Approximate solutions

Approximations at large depth

$$S_{\nu}(\tau_{\nu}) = \sum_{n=0}^{\infty} \frac{(t_{\nu} - \tau_{\nu})^n}{n!} \left[\frac{\mathrm{d}^n S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^n} \right]_{\tau_{\nu}}$$

$$I_{\nu}^{+}(\tau_{\nu},\mu) = + \int_{\tau_{\nu}}^{\infty} S_{\nu}(t_{\nu}) e^{-(t_{\nu}-\tau_{\nu})/\mu} dt_{\nu}/\mu$$

$$\int_{x_1}^{x_2} x^n e^{ax} dx = \frac{x^n e^{ax}}{a} \Big/_{x_1}^{x_2} - \frac{n}{a} \int_{x_1}^{x_2} x^{n-1} e^{ax} dx$$
$$\int_{x_1}^{x_2} x^n e^{-x} dx = -e^{-x} \Big[x^n + nx^{n-1} + n(n-1)x^{n-2} + \dots + n! \Big] \Big/_{x_1}^{x_2}$$
$$\int_0^\infty x^n e^{-x} dx = n!$$

$$I_{\nu}^{+}(\tau_{\nu},\mu) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\frac{\mathrm{d}^{n} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{n}} \right]_{\tau_{\nu}} \int_{\tau_{\nu}}^{\infty} (t_{\nu} - \tau_{\nu})^{n} \,\mathrm{e}^{-(t_{\nu} - \tau_{\nu})/\mu} \,\mathrm{d} t_{\nu}/\mu$$

Approximate solutions

Approximations at large depth

$$I_{\nu}^{+}(\tau_{\nu},\mu) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\frac{\mathrm{d}^{n} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{n}} \right]_{\tau_{\nu}} \int_{\tau_{\nu}}^{\infty} (t_{\nu} - \tau_{\nu})^{n} \,\mathrm{e}^{-(t_{\nu} - \tau_{\nu})/\mu} \,\mathrm{d} t_{\nu}/\mu$$

$$= \sum_{n=0}^{\infty} \left[\frac{\mathrm{d}^{n} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{n}} \right]_{\tau_{\nu}} \frac{1}{n!} \int_{0}^{\infty} x^{n} \,\mathrm{e}^{-x/\mu} \,\mathrm{d} x/\mu$$

$$= \sum_{n=0}^{\infty} \left[\frac{\mathrm{d}^{n} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{n}} \right]_{\tau_{\nu}} \frac{\mu^{n}}{n!} \int_{0}^{\infty} x^{n} \,\mathrm{e}^{-x} \,\mathrm{d} x$$

$$= \sum_{n=0}^{\infty} \mu^{n} \left[\frac{\mathrm{d}^{n} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{n}} \right]_{\tau_{\nu}}$$

Approximate solutions

Approximations at large depth

$$\begin{split} I_{\nu}^{-}(\tau_{\nu},\mu) &= \sum_{n=0}^{\infty} \frac{1}{n!} \left[\frac{\mathrm{d}^{n} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{n}} \right]_{\tau_{\nu}} \left[-\int_{0}^{\tau_{\nu}} (t_{\nu} - \tau_{\nu})^{n} \,\mathrm{e}^{-(t_{\nu} - \tau_{\nu})/\mu} \,\mathrm{d} t_{\nu}/\mu \right] \\ &= \sum_{n=0}^{\infty} \frac{1}{n!} \left[\frac{\mathrm{d}^{n} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{n}} \right]_{\tau_{\nu}} (-1)^{n} \left[+\int_{0}^{\tau_{\nu}} (\tau_{\nu} - t_{\nu})^{n} \,\mathrm{e}^{-(\tau_{\nu} - t_{\nu})/|\mu|} \,\mathrm{d} t_{\nu}/|\mu| \right] \\ &= \sum_{n=0}^{\infty} \left[\frac{\mathrm{d}^{n} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{n}} \right]_{\tau_{\nu}} (-1)^{n} \frac{|\mu|^{n}}{n!} \left[\int_{0}^{\tau_{\nu}/|\mu|} x^{n} \,\mathrm{e}^{-x} \,\mathrm{d} x \right] \\ &= \sum_{n=0}^{\infty} \mu^{n} \left[\frac{\mathrm{d}^{n} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{n}} \right]_{\tau_{\nu}} \left[1 - \frac{\mathrm{e}^{-(\tau_{\nu}/|\mu|)}}{n!} \left\{ (\tau_{\nu}/|\mu|)^{n} + n(\tau_{\nu}/|\mu|)^{n-1} + \dots + n! \right\} \right] \end{split}$$

Approximate solutions

Approximations at large depth

$$\begin{split} I_{\nu}(\tau_{\nu},\mu) &= S_{\nu}(\tau_{\nu}) + \mu \left[\frac{\mathrm{d}S_{\nu}(t_{\nu})}{\mathrm{d}t_{\nu}}\right]_{\tau_{\nu}} + \mu^{2} \left[\frac{\mathrm{d}^{2}S_{\nu}(t_{\nu})}{\mathrm{d}t_{\nu}^{2}}\right]_{\tau_{\nu}} + \cdots \\ \\ \mathbf{Large \ depth} \\ \tau_{\nu} \gg 1 \end{split}$$

$$J_{\nu}(\tau_{\nu}) = \frac{1}{2} \sum_{n=0}^{\infty} \left[\frac{\mathrm{d}^{n} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{n}} \right]_{\tau_{\nu}} \int_{-1}^{+1} \mu^{n} \,\mathrm{d}\mu = \sum_{k=0}^{\infty} \frac{1}{2k+1} \left[\frac{\mathrm{d}^{(2k)} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{(2k)}} \right]_{\tau_{\nu}}$$
$$J_{\nu}(\tau_{\nu}) = S_{\nu}(\tau_{\nu}) + \frac{1}{3} \left[\frac{\mathrm{d}^{2} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{2}} \right]_{\tau_{\nu}} + \cdots$$
$$F_{\nu}(\tau_{\nu}) = \frac{4}{3} \left[\frac{\mathrm{d} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}} \right]_{\tau_{\nu}} + \frac{4}{5} \left[\frac{\mathrm{d}^{3} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{3}} \right]_{\tau_{\nu}} + \cdots$$
$$K_{\nu}(\tau_{\nu}) = \frac{1}{3} S_{\nu}(\tau_{\nu}) + \frac{1}{5} \left[\frac{\mathrm{d}^{2} S_{\nu}(t_{\nu})}{\mathrm{d} t_{\nu}^{2}} \right]_{\tau_{\nu}} + \cdots$$

Approximate solutions

Approximations at large depth

Convergence

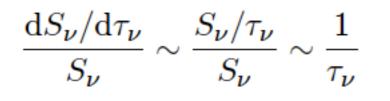
$\mathrm{d}^n S_{\nu}$	S_{ν}
dt_{ν}^{n}	$\sim \overline{t_{\nu}^n}$

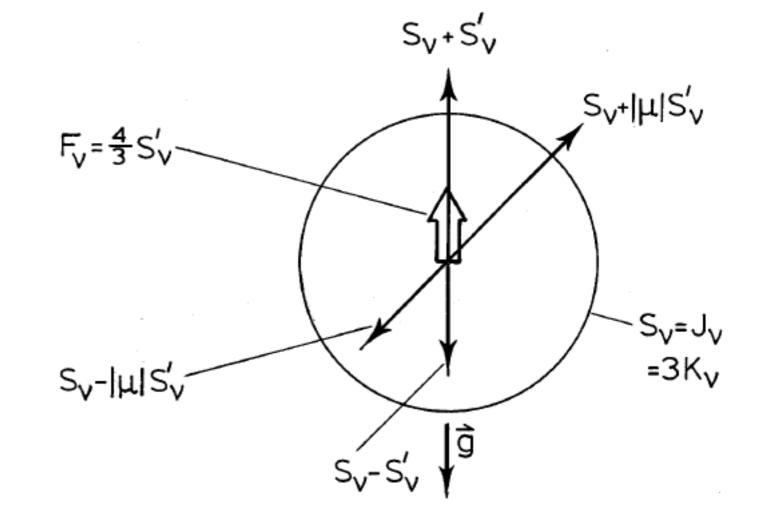
$\frac{\left \mathrm{d}^{n+2}S\right }{\left \mathrm{d}^{n}S\right }$	$\frac{d\nu}{d\nu}/dt$	$\frac{ t_{\nu}^{n+2} }{ t_{\nu}^{n} } \sim \frac{S_{\nu}/t_{\nu}^{n+2}}{S_{\nu}/t_{\nu}^{n}} \sim \frac{1}{t_{\nu}^{2}}$
$I_{\nu}(au_{ u},\mu)$	\approx	$S_{\nu}(\tau_{\nu}) + \mu \left[\frac{\mathrm{d}S_{\nu}(t_{\nu})}{\mathrm{d}t_{\nu}}\right]_{\tau_{\nu}}$
$J_{\nu}(\tau_{\nu})$	\approx	$S_{\nu}(au_{ u})$
$F_{\nu}(\tau_{\nu})$	\approx	$\frac{4}{3} \left[\frac{\mathrm{d}S_{\nu}(t_{\nu})}{\mathrm{d}t_{\nu}} \right]_{\tau_{\nu}}$

$$K_{\nu}(\tau_{\nu}) \approx \frac{1}{3}S_{\nu}(\tau_{\nu}).$$

Approximate solutions

Approximations at large depth





Approximate solutions

Approximations at large depth

Diffusion approximation

 $\begin{aligned} \tau_{\nu}^* > 1 \\ S_{\nu} &= B_{\nu} \end{aligned}$ $I_{\nu}(\tau_{\nu}, \mu) \approx B_{\nu}(\tau_{\nu}) + \mu \left[\frac{\mathrm{d}B_{\nu}(t_{\nu})}{\mathrm{d}t_{\nu}}\right]_{\tau_{\nu}} \\ J_{\nu}(z) \approx B_{\nu}(z) \end{aligned}$ $\mathcal{F}_{\nu}(z) \approx 2\pi \int_{-1}^{+1} \mu I_{\nu} \,\mathrm{d}\mu \approx \frac{4\pi}{3} \frac{\mathrm{d}B_{\nu}(z)}{\mathrm{d}\tau_{\nu}} \end{aligned}$

Approximate solutions

Approximations at large depth

Rosseland mean extinction

$$\frac{1}{\alpha_{\rm R}} \equiv \frac{\int_0^\infty (1/\alpha_\nu) (\mathrm{d}B_\nu/\mathrm{d}T) \,\mathrm{d}\nu}{\int_0^\infty (\mathrm{d}B_\nu/\mathrm{d}T) \,\mathrm{d}\nu}$$
$$\frac{1}{\kappa_{\rm R}} \equiv \frac{\int_0^\infty (1/\kappa_\nu) (\mathrm{d}B_\nu/\mathrm{d}T) \,\mathrm{d}\nu}{\int_0^\infty (\mathrm{d}B_\nu/\mathrm{d}T) \,\mathrm{d}\nu}$$

 $\kappa_{\rm R}(z) = \alpha_{\rm R}(z)/\rho(z)$

Approximate solutions

Approximations at large depth

Total radiative energy diffusion

$$\begin{aligned} \mathcal{F}(z) &\equiv \int_0^\infty \mathcal{F}_\nu(z) \, \mathrm{d}\nu \\ &\approx -\frac{4\pi}{3} \int_0^\infty \frac{1}{\alpha_\nu} \frac{\mathrm{d}B_\nu}{\mathrm{d}z} \, \mathrm{d}\nu \\ &\approx -\frac{4\pi}{3} \int_0^\infty \frac{1}{\alpha_\nu} \frac{\mathrm{d}B_\nu}{\mathrm{d}T} \frac{\mathrm{d}T}{\mathrm{d}z} \, \mathrm{d}\nu \\ &\approx -\frac{16}{3} \frac{\sigma T^3}{\alpha_\mathrm{R}} \frac{\mathrm{d}T}{\mathrm{d}z} \\ &\approx -\frac{1}{3} \frac{c}{\kappa_\mathrm{R}\rho} \frac{\mathrm{d}u}{\mathrm{d}z} \\ &\approx u = (4\sigma/c)T^4 \\ &l \equiv 1/\rho\kappa_\mathrm{R} \end{aligned}$$

Approximate solutions

Approximations at large depth

The Eddington approximation

 $I_{\nu}(\tau_{\nu},\mu) \approx S_{\nu}(\tau_{\nu}) + \mu \left[\frac{\mathrm{d}S_{\nu}(t_{\nu})}{\mathrm{d}t_{\nu}}\right]$ $J_{\nu}(\tau_{\nu}) \approx S_{\nu}(\tau_{\nu})$ $F_{\nu}(\tau_{\nu}) \approx \frac{4}{3} \left[\frac{\mathrm{d}S_{\nu}(t_{\nu})}{\mathrm{d}t_{\nu}} \right]$ $K_{\nu}(\tau_{\nu}) \approx \frac{1}{2}S_{\nu}(\tau_{\nu}).$ $K_{\nu}(\tau_{\nu}) \approx \frac{1}{2} J_{\nu}(\tau_{\nu})$ $K_{\nu}(\tau_{\nu}) \equiv \frac{1}{2} \int_{-1}^{+1} I_{\nu}(\tau_{\nu},\mu) \mu^2 \,\mathrm{d}\mu$ $\approx \frac{1}{2} < I_{\nu}(\tau_{\nu},\mu) > \int_{-1}^{+1} \mu^2 \,\mathrm{d}\mu$ $\approx \frac{1}{2} J_{\nu}(\tau_{\nu})$

Approximate solutions

Approximations at large depth

The Eddington approximation

$$I_{\nu}(\tau_{\nu},\mu) \equiv a_{0}(\tau_{\nu}) + a_{1}(\tau_{\nu}) \mu$$

$$J_{\nu}(\tau_{\nu}) \equiv \frac{1}{2} \int_{-1}^{+1} I_{\nu}(\tau_{\nu},\mu) d\mu = a_{0}(\tau_{\nu}),$$

$$H_{\nu}(\tau_{\nu}) \equiv \frac{1}{2} \int_{-1}^{+1} \mu I_{\nu}(\tau_{\nu},\mu) d\mu = a_{1}(\tau_{\nu})/3,$$

$$K_{\nu}(\tau_{\nu}) \equiv \frac{1}{2} \int_{-1}^{+1} \mu^{2} I_{\nu}(\tau_{\nu},\mu) d\mu = a_{0}(\tau_{\nu})/3$$

Approximate solutions

Approximations at large depth

Second order transport equation

$$\frac{1}{3} \frac{\mathrm{d}^2 J_\nu(\tau_\nu)}{\mathrm{d}\tau_\nu^2} = J_\nu(\tau_\nu) - S_\nu(\tau_\nu)$$
$$S_\nu = (1 - \varepsilon_\nu) J_\nu + \varepsilon_\nu B_\nu$$

$$\frac{1}{3} \frac{\mathrm{d}^2 J_\nu(\tau_\nu)}{\mathrm{d}\tau_\nu^2} = \varepsilon_\nu \left[J_\nu(\tau_\nu) - B_\nu(\tau_\nu) \right]$$

Classical modelling

Assumption

- The atmosphere is spherically symmetric.
- Element mixture homogenous with depth.
- Hydrostatic equilibrium.
- Statistical equilibrium / time independence.
- Atmosphere's mass small relative to stellar.
- No sources or sinks of energy.
- Energy transport is radiative and convective.
- Maxwellian distribution for free particles.

Classical modelling

Model parameters

- Stellar Luminosity L
- Stellar Radius R
- Element mixture [Fe/H]
- Microturbulence ξ_{micro}
- Effective temperature $T_{\rm eff} = (L/4\pi\sigma R^2)^{1/4}$
- Surface gravity $g_s = GM/R^2$

 $T_{\text{eff}}, \log g_s, [\text{Fe/H}] \text{ and } \xi_{\text{micro}}$

Pressure stratification

Gas law

$$P_{g}V = n_{mole}\mathcal{R}T \qquad \mathcal{R} = 8.314 \times k = 1.38 \times k = 1.38 \times k = 1.38 \times N_{A} = n_{mole}N_{A}/V \qquad N_{A} = 6.02 \times m_{H} = 1.66 \times \mu \equiv \overline{m}/m_{H} \qquad \rho = N_{g}\mu m_{H}$$

$$\begin{aligned} \mathcal{R} &= 8.314 \times 10^7 \, \mathrm{erg \, mole^{-1} \, K^{-1}} \\ k &= 1.38 \times 10^{-16} \, \mathrm{erg \, K^{-1}} \\ N_\mathrm{A} &= 6.02 \times 10^{23} \, \mathrm{mole^{-1}} \\ m_\mathrm{H} &= 1.66 \times 10^{-24} \, \mathrm{g} \end{aligned}$$

$$\begin{split} P_{\rm g} &= \frac{n_{\rm mole} N_{\rm A}}{V} \frac{\mathcal{R}}{N_{\rm A}} T = N_{\rm g} kT = \frac{\rho kT}{\mu \, m_{\rm H}} = \frac{\rho \mathcal{R} T}{\mu} \\ P_{\rm g} &= \sum_{i} P_{i} = \sum_{i} N_{i} kT \\ P_{\rm e} &= N_{\rm e} kT \end{split}$$

Pressure stratification

Particle densities

Chemical composition

Е	$A_{ m E}$	A_{12}	χ_0	χ_1	\mathbf{E}	$A_{ m E}$	A_{12}	χ_0	χ_1
Н	1.000	12.0	13.60	_	Al	$2.5 imes10^{-6}$	6.4	5.99	18.83
He	$7.9 imes10^{-2}$	10.9	24.59	54.42	Si	$3.2 imes10^{-5}$	7.5	8.15	16.35
\mathbf{C}	$3.2 imes 10^{-4}$	8.5	11.26	24.38	\mathbf{S}	$1.6 imes10^{-5}$	7.2	10.36	23.33
Ν	$1.0 imes 10^{-4}$	8.0	14.53	29.60	Κ	$1.0 imes10^{-7}$	5.0	4.34	31.63
0	$6.3 imes10^{-4}$	8.8	13.62	35.12	\mathbf{C} a	$2.0 imes10^{-6}$	6.3	6.11	11.87
Na	$2.0 imes10^{-6}$	6.3	5.14	47.29	\mathbf{Cr}	$7.9 imes10^{-7}$	5.9	6.77	16.50
Mg	$2.5 imes 10^{-5}$	7.4	7.65	15.04	\mathbf{Fe}	$4.0 imes10^{-5}$	7.6	7.87	16.16

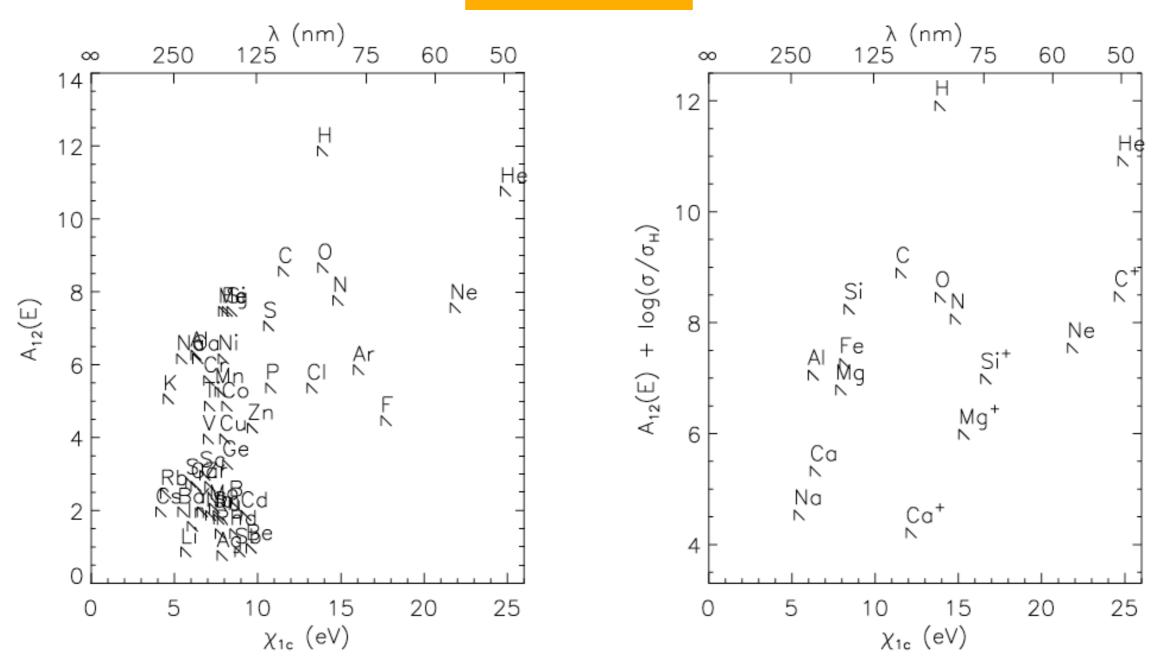
 $A_{12} \equiv \log N_{\rm E} - \log N_{\rm H} + 12$

X = 0.73 Y = 0.25 Z = 0.017

Pressure stratification

Particle densities

Electron donors



Pressure stratification

Particle densities

Electron donors

 $A_{\rm M} = N_{\rm M}/N_{\rm H} \ll 1$ $N_{\rm g} = N_{\rm H} + A_{\rm M}N_{\rm H} + f_{\rm H}N_{\rm H} + f_{\rm M}A_{\rm M}N_{\rm H}$ $N_{\rm e} = f_{\rm H} N_{\rm H} + f_{\rm M} A_{\rm M} N_{\rm H}$ $\frac{N_{\rm e}}{N_{\rm g}} = \frac{f_{\rm H} + f_{\rm M} A_{\rm M}}{1 + f_{\rm H} + (1 + f_{\rm M}) A_{\rm M}}$ $f_{\rm H} \approx 1 \rightarrow \frac{N_{\rm e}}{N_{\rm e}} \approx \frac{1}{2}$ $A_{\rm M} \ll f_{\rm H} \ll 1 \quad \rightarrow \quad \frac{N_{\rm e}}{N_{\rm e}} \approx f_{\rm H}$ $f_{\rm H} \approx 0 \quad \rightarrow \quad \frac{N_{\rm e}}{N_{\rm e}} \approx f_{\rm M} A_{\rm M}$

Pressure stratification

Particle densities

Electron and gas pressure

 $P_{g} = N_{g}kT$ $P_{\rm e} = N_{\rm e}kT$ $N_z = N_I + N_{II} + N_{III}$ $\frac{\mathbf{I}}{f_{\mathrm{II}}} = \frac{N_{\mathrm{I}}}{N_{\mathrm{II}}} + \frac{N_{\mathrm{II}}}{N_{\mathrm{II}}} + \frac{N_{\mathrm{III}}}{N_{\mathrm{II}}}$ $\frac{1}{f_{\text{III}}} = \frac{N_{\text{I}}}{N_{\text{II}}} \frac{N_{\text{II}}}{N_{\text{III}}} + \frac{N_{\text{II}}}{N_{\text{III}}} + \frac{N_{\text{III}}}{N_{\text{III}}}$ $E = \frac{N_{\rm e}}{N_{\rm puclei}} = \frac{\sum_{\rm z} N_{\rm z} f_{\rm II}(z) + 2\sum_{\rm z} N_{\rm z} f_{\rm III}(z)}{\sum_{\rm z} N_{\rm z}}$ $\frac{P_{\rm g}}{P_{\rm e}} = \frac{\left(N_{\rm ions} + N_{\rm atoms} + N_{\rm e}\right) kT}{N_{\rm e}kT} = \frac{\left(N_{\rm nuclei} + N_{\rm e}\right) kT}{N_{\rm e}kT} = \frac{E+1}{E}$

Pressure stratification

Hydrostatic equilibrium

$$\frac{\mathrm{d}P}{\mathrm{d}z} = -g\rho$$
$$\frac{\mathrm{d}P}{\mathrm{d}\tau_0} = \frac{g}{\kappa_0} \qquad \qquad \mathrm{d}\tau_0 = -\kappa_0\rho \,\mathrm{d}z$$

$$\frac{\mathrm{d}p}{\mathrm{d}\tau_0} = \frac{4\pi}{c} \int_0^\infty \frac{\mathrm{d}K_\nu}{\mathrm{d}\tau_0} \,\mathrm{d}\nu = \frac{4\pi}{c} \int_0^\infty \frac{\mathrm{d}K_\nu}{\mathrm{d}\tau_\nu} \frac{\mathrm{d}\tau_\nu}{\mathrm{d}\tau_0} \,\mathrm{d}\nu = \frac{1}{c} \int_0^\infty \mathcal{F}_\nu \frac{\kappa_\nu}{\kappa_0} \,\mathrm{d}\nu$$

$$\frac{\text{Model completion}}{P_{\mathrm{g}}^{1/2} \frac{\mathrm{d}P_{\mathrm{g}}}{\mathrm{d}\tau_0}} = P_{\mathrm{g}}^{1/2} \frac{g}{\kappa_0}$$

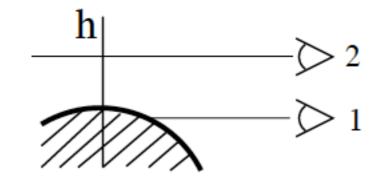
$$P_{\mathrm{g}}(\tau_0) = \left(\frac{3g}{2} \int_0^{\tau_0} \frac{P_{\mathrm{g}}^{1/2}(t_0)}{\kappa_0(t_0)} \,\mathrm{d}t_0\right)^{2/3}$$

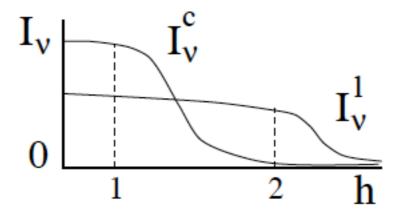
Pressure stratification

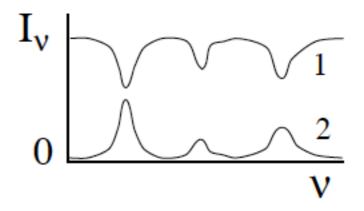
Plane-parallel layers

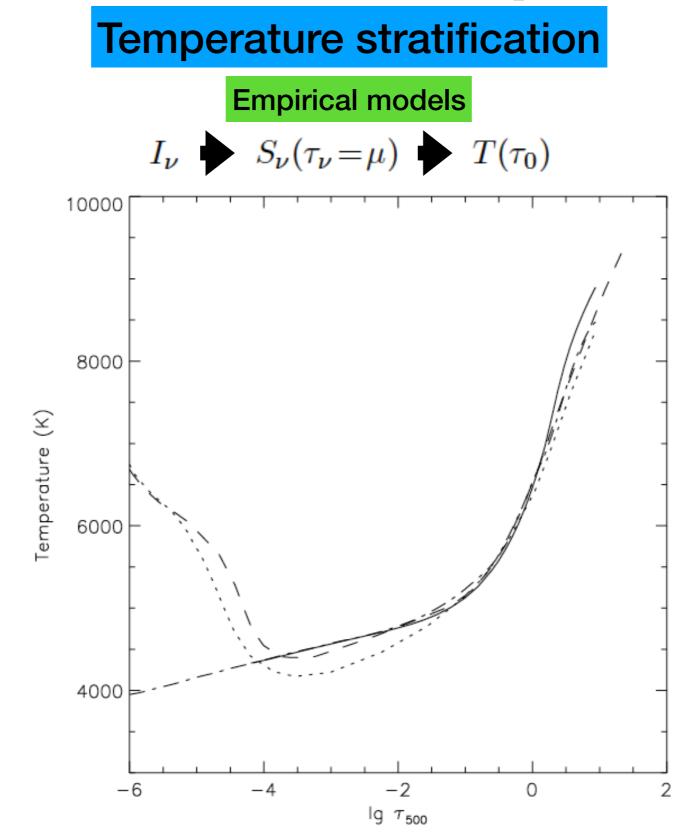
$$\begin{split} H_{\rm P} &\equiv \mathcal{R}T/\mu g\\ \frac{\mathrm{d}P_{\rm g}}{\mathrm{d}z} = -\frac{\mu g}{\mathcal{R}T} \, P_{\rm g} = -\frac{P_{\rm g}}{H_{\rm P}}\\ P_{\rm g}(z) &= P_{\rm g}(0) \, \mathrm{e}^{-z/H_{\rm P}}\\ \frac{H_{\rm P}}{R_*} = \frac{\mathcal{R}T}{\mu g R_*} = \frac{\mathcal{R}T R_*}{\mu G M_*} = 4.4 \times 10^{-8} \, \frac{T_{\rm eff} \, (R_*/R_\odot)}{\mu \left(M_*/M_\odot\right)} \ll 1 \end{split}$$

Solar limb









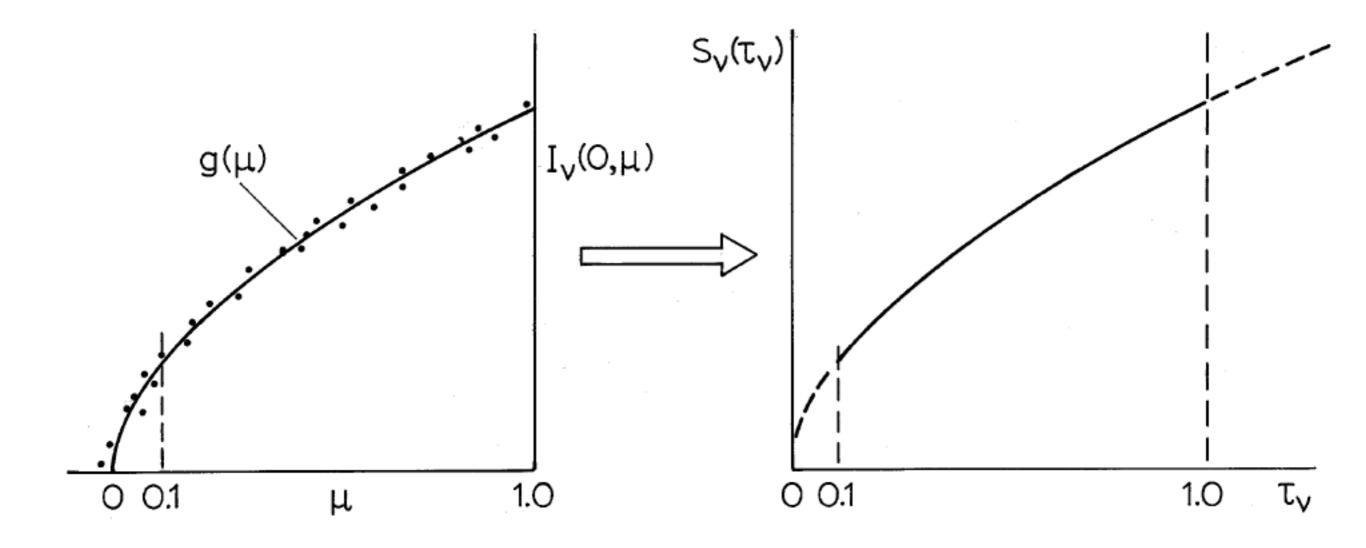
Temperature stratification

Center-limb variation

$$\frac{I_{\nu}(0,\mu)}{I_{\nu}(0,1)} = a_{\nu} + b_{\nu}\mu + c_{\nu}\left(1 - \mu \ln(1 + \frac{1}{\mu})\right)$$
$$S_{\nu}(\tau_{\nu}) = a_{\nu} + b_{\nu}\tau_{\nu} + c_{\nu}E_{2}(\tau_{\nu})$$
$$\frac{d\tau_{\nu}}{d\tau_{0}} = \frac{\kappa_{\nu}\rho \,dz}{\kappa_{0}\rho \,dz} = \frac{\kappa_{\nu}}{\kappa_{0}} \qquad \tau_{\nu}(\tau_{0}) = \int_{0}^{\tau_{0}} \frac{\kappa_{\nu}}{\kappa_{0}} \,dt_{\nu}$$

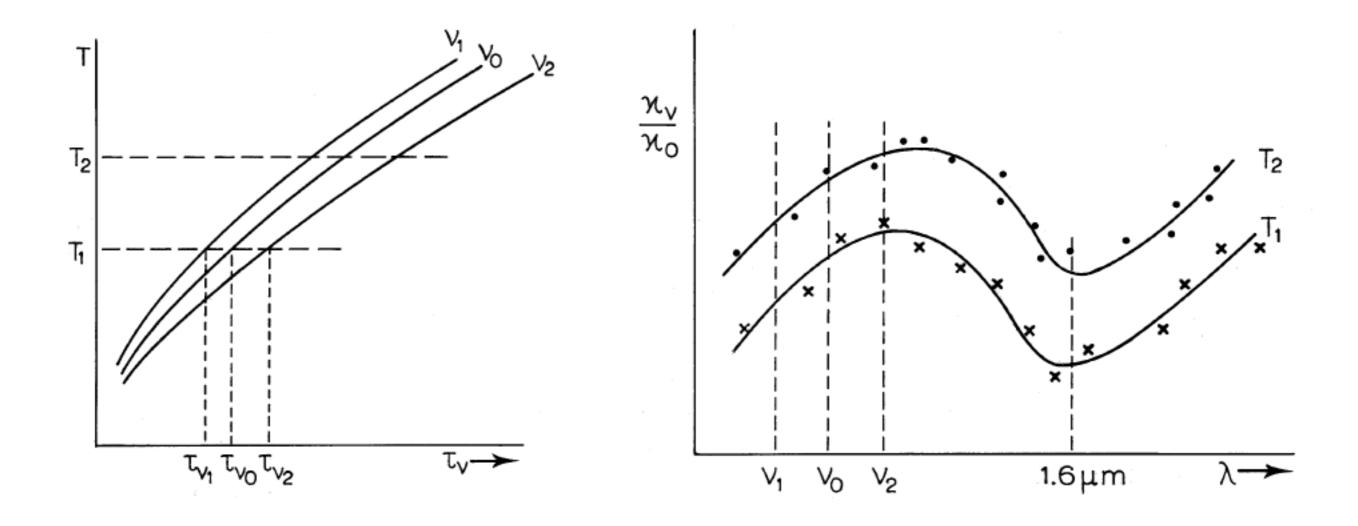
Temperature stratification

Center-limb variation



Temperature stratification

Center-limb variation



Temperature stratification

Flux constancy

 $\nabla \cdot \mathbf{F}_{\text{tot}}(\mathbf{r}) = \nabla \cdot [\mathbf{F}_{\text{rad}}(\mathbf{r}) + \mathbf{F}_{\text{conv}}(\mathbf{r}) + \mathbf{F}_{\text{cond}}(\mathbf{r}) + \mathbf{F}_{\text{mech}}(\mathbf{r})] \equiv 0,$ $\frac{\mathrm{d}F_{\text{tot}}}{\mathrm{d}z} = 0$ **Radiative equilibrium** $\mathcal{F}_{\text{rad}}(z) \equiv \int_{0}^{\infty} \mathcal{F}_{\nu}(z) \, \mathrm{d}\nu = \mathcal{F}$ $\mathcal{F}_{\text{rad}}(z) \equiv \int_{0}^{\infty} \mathcal{F}_{\nu}(z) \, \mathrm{d}\nu = \mathcal{F}$ $\mathcal{F} \equiv \sigma T_{\text{eff}}^{4} = \frac{L_{*}}{4\pi R_{*}^{2}}$ $\frac{\mathrm{d}\mathcal{F}_{\text{rad}}(z)}{\mathrm{d}z} = 0$

Temperature stratification

Radiative equilibrium

Strömgren equation

$$\int_0^\infty \kappa_\nu(z)\rho(z)\,J_\nu(z)\,\mathrm{d}\nu = \int_0^\infty \kappa_\nu(z)\rho(z)\,S_\nu(z)\,\mathrm{d}\nu$$

Total radiative flux divergence

$$\Phi_{\rm tot}(z) \equiv \frac{\mathrm{d}\mathcal{F}_{\rm rad}(z)}{\mathrm{d}z} = 4\pi \int_0^\infty \alpha_\nu(z) \left[S_\nu(z) - J_\nu(z)\right] \,\mathrm{d}\nu = 0 \quad \mathrm{erg}\,\mathrm{cm}^{-3}\,\mathrm{s}^{-1}$$
$$\Phi_{\rm tot}(z) \equiv \frac{\mathrm{d}\mathcal{F}_{\rm rad}(z)}{\mathrm{d}z} = \frac{1}{2} \int_0^\infty \int_{-1}^{+1} \left[j_{\nu\mu}(z) - \alpha_{\nu\mu}(z)\,I_{\nu\mu}(z)\right] \,\mathrm{d}\mu\,\mathrm{d}\nu = 0$$

Temperature stratification

Line cooling

$$\Phi_{ul} = 4\pi \alpha_{\nu_0}^{l} (S_{\nu_0}^{l} - \overline{J}_{\nu_0})
= 4\pi j_{\nu_0}^{l} - 4\pi \alpha_{\nu_0}^{l} \overline{J}_{\nu_0}
= h\nu_0 \left[n_u (A_{ul} + B_{ul} \overline{J}_{\nu_0}) - n_l B_{lu} \overline{J}_{\nu_0} \right]
= h\nu_0 \left[n_u R_{ul} - n_l R_{lu} \right],$$

$$\int \varphi(\nu - \nu_0) \,\mathrm{d}\nu = \int \chi(\nu - \nu_0) \,\mathrm{d}\nu = \int \psi(\nu - \nu_0) \,\mathrm{d}\nu = 1$$

Wien limit

$$\Phi_{ul} = h\nu_0 \left[n_u R_{ul} - n_l R_{lu} \right] \approx 4\pi \, b_u \, \left[\alpha_{\nu_0}^l \right]_{\text{LTE}} \left(B_{\nu_0} - \frac{b_l}{b_u} \overline{J}_{\nu_0} \right)$$

Temperature stratification

Continuum cooling

$$\Phi_{ci} = 4\pi n_i^{\text{LTE}} b_c \int_{\nu_0}^{\infty} \sigma_{ic}(\nu) \left[B_{\nu} \left(1 - e^{-h\nu/kT} \right) - \frac{b_i}{b_c} J_{\nu} \left(1 - \frac{b_c}{b_i} e^{-h\nu/kT} \right) \right] \, \mathrm{d}\nu$$

Wien limit

$$\Phi_{ci} = 4\pi n_i^{\text{LTE}} b_c \int_{\nu_0}^{\infty} \sigma_{ic}(\nu) \left(B_{\nu} - \frac{b_i}{b_c} J_{\nu} \right) \, \mathrm{d}\nu.$$

The grey approximation

$$\int_0^\infty \mu \frac{\mathrm{d}I_\nu(\tau_\nu,\mu)}{\mathrm{d}\tau_\nu} \,\mathrm{d}\nu = \int_0^\infty \left[I_\nu(\tau_\nu,\mu) - S_\nu(\tau_\nu)\right] \,\mathrm{d}\nu$$
$$\mu \frac{\mathrm{d}I(\tau,\mu)}{\mathrm{d}\tau} = I(\tau,\mu) - S(\tau).$$
$$S(\tau) = J(\tau)$$
$$J(\tau) = \Lambda_\tau[S(t)]$$
$$F(\tau) = \Phi_\tau[S(t)] = F$$

The grey approximation

Grey RE source function

$$\begin{split} S(\tau) &\approx c \left(1 + \frac{3}{2}\tau\right) \\ F &= \Phi_{\tau}[S(t)] = \frac{d}{d\tau} \chi_{\tau}[S(\tau)] = 4 \frac{dK(\tau)}{d\tau} \\ K(\tau) &= (1/4)F\tau + a \\ K(\tau) &\approx (1/3)J(\tau) = (1/3)S(\tau) \\ S(\tau) &\approx (3/4)F\tau + 3a \\ S(\tau) &= \frac{3}{4}(\tau + q(\tau))F \\ \tau + q(\tau) &= \Lambda_{\tau}[\tau + q(\tau)] \\ S(0) &= J(0) \approx F/2 \\ S(\tau) &\approx \frac{3}{4}(\tau + \frac{2}{3})F = (\frac{3}{4}\tau + \frac{1}{2})F = \frac{1}{2}(1 + \frac{3}{2}\tau)F \quad F = (\sigma/\pi)T_{\text{eff}}^4 \end{split}$$

The grey approximation

Grey RE temperature stratification

$$S(\tau) = B(\tau) = (\sigma/\pi) T^4$$
$$T(\tau) \approx T_{\text{eff}} \left(\frac{3}{4}\tau + \frac{1}{2}\right)^{1/4}$$
$$T_{\text{eff}} = T(\tau = 2/3)$$
$$S_{\nu}(\tau) = B_{\nu} [T(\tau)]$$

The grey approximation

Grey RE scattering

$$S_{\nu} = (1 - \varepsilon_{\nu})J_{\nu} + \varepsilon_{\nu}B_{\nu}$$
$$\int_{0}^{\infty} \kappa_{\nu} \rho J_{\nu} d\nu = \int_{0}^{\infty} \kappa_{\nu} \rho S_{\nu} d\nu$$
$$\kappa \rho J = \kappa \rho [(1 - \varepsilon)J + \varepsilon B]$$
$$\varepsilon J = \varepsilon B$$
$$J = B = S,$$

The grey approximation

Grey RE limb darkening

$$\frac{I(0,\mu)}{I(0,1)} = \frac{3}{5}\left(\mu + \frac{2}{3}\right)$$

		Limb darkening $I(0,\mu)/I(0,1)$									
r/R_{\odot}	μ	Observed	Radiat	ive equilibrium	Convective equilibrium						
0.00	1.00	1.00	1.00	1.00	1.00	1.00					
0.20	0.98	0.99	0.99	0.99	0.98	0.97					
0.40	0.92	0.97	0.95	0.95	0.92	0.87					
0.60	0.80	0.92	0.87	0.88	0.80	0.70					
0.80	0.60	0.81	0.73	0.76	0.60	0.44					
0.90	0.44	0.70	0.63	0.66	0.44	0.27					
0.98	0.20	0.49	0.47	0.52	0.20	0.08					
1.00	0.00	pprox 0.40	0.33	0.40	0.00	0.00					

The grey approximation

Grey extinction and mean extinction

$$4\frac{\mathrm{d}K_{\nu}(z)}{\mathrm{d}\tau_{\nu}} = 4\frac{\mathrm{d}K_{\nu}(z)}{-\kappa_{\nu}(z)\rho(z)\,\mathrm{d}z} = F_{\nu}(z)$$

$$\int_0^\infty 4 \frac{\mathrm{d}K_\nu(z)}{-\kappa_\nu(z)\rho(z)\,\mathrm{d}z}\,\mathrm{d}\nu \equiv \frac{1}{\overline{\kappa}(z)}\int_0^\infty 4 \frac{\mathrm{d}K_\nu(z)}{-\rho(z)\,\mathrm{d}z}\,\mathrm{d}\nu$$
$$\int_0^\infty 4 \frac{\mathrm{d}K_\nu(z)}{-\kappa_\nu(z)\rho(z)\,\mathrm{d}z}\,\mathrm{d}\nu = \int_0^\infty F_\nu(z)\,\mathrm{d}\nu = F(z)$$
$$\overline{\kappa}(z) \equiv \frac{\int_0^\infty \kappa_\nu(z)\,F_\nu(z)\,\mathrm{d}\nu}{\int_0^\infty F_\nu(z)\,\mathrm{d}\nu} = \int_0^\infty \kappa_\nu(z)\,\frac{F_\nu(z)}{F(z)}\,\mathrm{d}\nu$$

$$\frac{1}{\overline{\kappa}(z)} \int_{0}^{\infty} 4 \frac{\mathrm{d}\kappa_{\nu}(z)}{-\rho(z) \,\mathrm{d}z} \,\mathrm{d}\nu = \frac{1}{\overline{\kappa}(z)} 4 \frac{\mathrm{d}\kappa(z)}{-\rho(z) \,\mathrm{d}z}$$

$$= \int_{0}^{\infty} [1/\kappa_{\nu}(z)] \left(\mathrm{d}K_{\nu}(z)/\mathrm{d}z\right) \,\mathrm{d}\nu = \int_{0}^{\infty} (1 - \rho(z)) \,\mathrm{d}z$$

1

$$\frac{1}{\kappa(z)} \equiv \frac{\int_0^\infty (dK_\nu(z)/dz) \, d\nu}{\int_0^\infty (dK_\nu(z)/dz) \, d\nu} = \int_0^\infty \frac{1}{\kappa_\nu(z)} \frac{dK_\nu(z)/dz}{dK(z)/dz} \, d\nu$$

The grey approximation

Flux-weighted mean and Rosseland mean

$$K_{\nu} \approx \frac{1}{3} J_{\nu} \approx \frac{1}{3} B_{\nu}$$

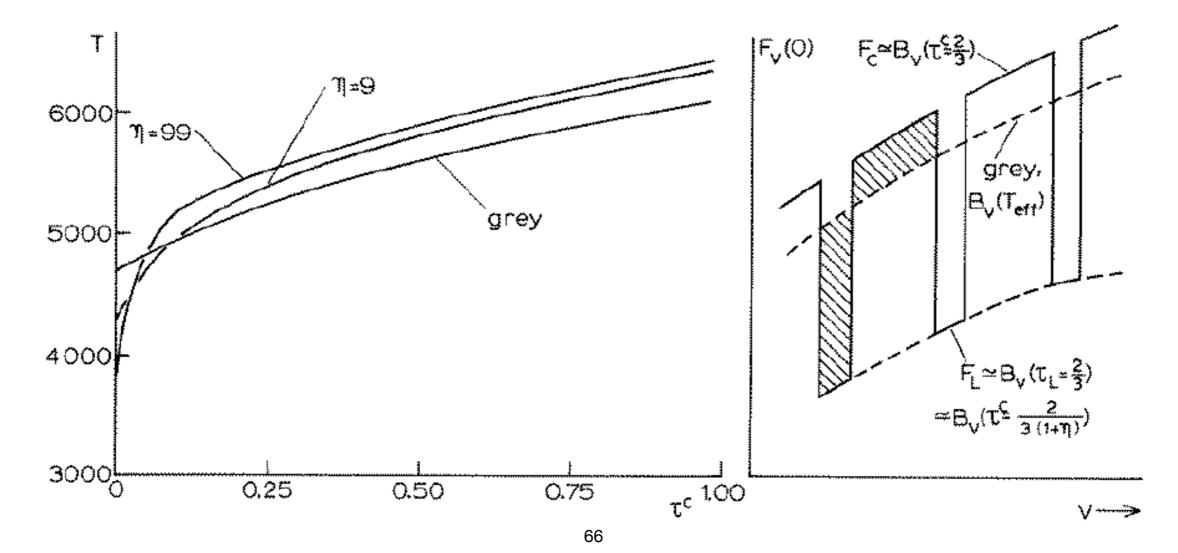
 $\mathrm{d}K_{\nu}/\mathrm{d}z \approx (1/3)\,\mathrm{d}B_{\nu}/\mathrm{d}z = (1/3)\,(\mathrm{d}B_{\nu}/\mathrm{d}T)\,(\mathrm{d}T/\mathrm{d}z)$

$$\frac{1}{\overline{\kappa}} \approx \int_0^\infty \frac{1}{\kappa_\nu} \frac{\mathrm{d}B_\nu/\mathrm{d}T}{\mathrm{d}B/\mathrm{d}T} \,\mathrm{d}\nu \equiv \frac{1}{\kappa_\mathrm{R}}$$
$$T(\tau_\mathrm{R}) = T_\mathrm{eff} \left[\frac{3}{4}\tau_\mathrm{R} + \frac{3}{4}q(\tau_\mathrm{R})\right]^{1/4}$$
$$\mathrm{d}\tau_\mathrm{R} = -\kappa_\mathrm{R}\rho \,\mathrm{d}z$$
$$J(\tau_\mathrm{R}) = S(\tau_\mathrm{R}) = B(\tau_\mathrm{R}) = \frac{\sigma}{\pi}T^4(\tau_\mathrm{R}) = \frac{3}{4}\left[\tau_\mathrm{R} + q(\tau_\mathrm{R})\right] F_\mathrm{eff}$$
$$q(\tau_\mathrm{R}) \approx 2/3$$

Line blanketing

Backwarming

$$\frac{\int_0^\infty F_\nu' \,\mathrm{d}\nu}{\int_0^\infty F_\nu \,\mathrm{d}\nu} = \frac{F'}{F} = \frac{(\sigma/\pi) \,T_{\mathrm{eff}}'^4}{(\sigma/\pi) \,T_{\mathrm{eff}}^4} = 1 - f$$
$$T_{\mathrm{eff}} = (1 - f)^{-1/4} \,T_{\mathrm{eff}}' \approx (1 + f/4) \,T_{\mathrm{eff}}'$$



Line blanketing

Surface effects

$$\Phi_{ul}(z) = 4\pi \, \alpha_{\nu_0}^l(z) \left[S_{\nu_0}^l(z) - \overline{J}_{\nu_0}(z) \right]$$

$$\overline{J_{\nu}(0)} > B_{\nu}(0) \quad \text{high-frequency side}$$

$$J_{\nu}(0) < B_{\nu}(0) \quad \text{low-frequency side}$$

Strong LTE lines

$$d\tau_{\nu}^{\text{tot}} = d\tau_{\nu}^{c} + d\tau_{\nu}^{l} = (1 + \eta_{\nu}) d\tau_{\nu}^{c} \qquad \eta = \kappa_{\nu}^{l} / \kappa_{\nu}^{c}$$
$$\tau_{\nu}^{c} = 1 / (1 + \eta_{\nu})$$
$$J_{\nu}(0) = (1/2) B_{\nu}$$
$$\int_{0}^{\infty} \kappa_{\nu}(0) J_{\nu}(0) d\nu = \int_{0}^{\infty} \kappa_{\nu}(0) B_{\nu}(0) d\nu$$

Line blanketing

Strong scattering lines

$$J_{\nu_0}(0) \approx S_{\nu_0}(0) \approx \sqrt{\varepsilon_{\nu_0}} B_{\nu_0}(0) \ll B_{\nu_0}(0)$$

$$S_{\nu_0}^l(0) - \overline{J}_{\nu_0}(0) \approx \frac{\varepsilon_{\nu_0}}{1 + \sqrt{\varepsilon_{\nu_0}}} B_{\nu_0} \approx \varepsilon_{\nu_0} B_{\nu_0}$$

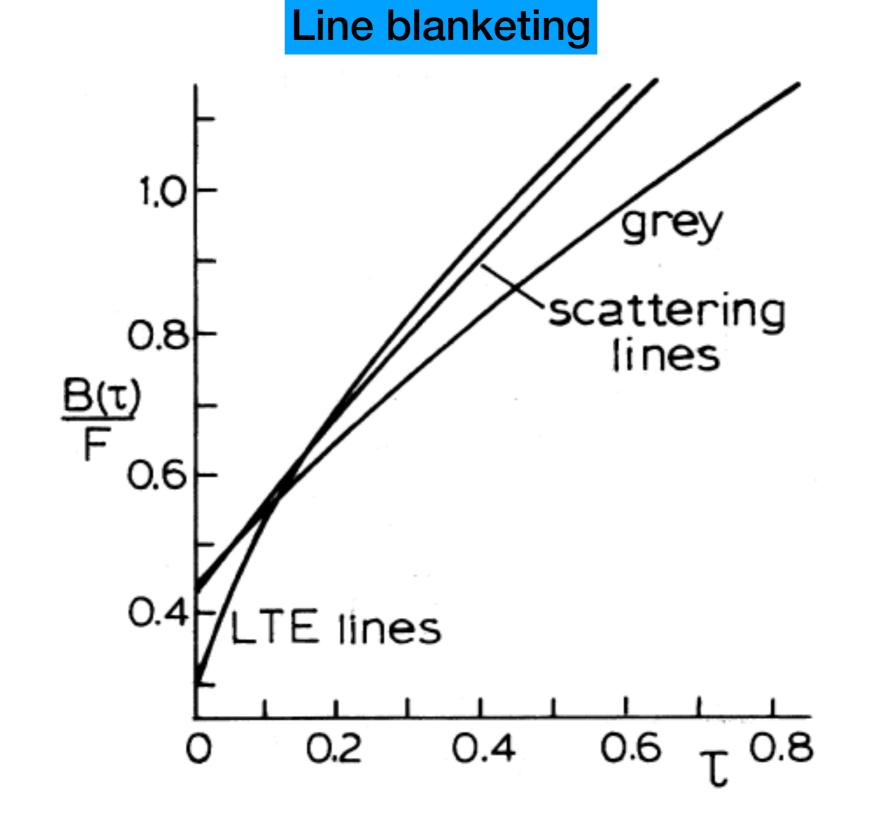
$$\Phi_{ul} = 4\pi \alpha_{\nu_0}^l (S_{\nu_0}^l - \overline{J}_{\nu_0})$$

$$= 4\pi \alpha_{\nu_0}^l \left[(1 - \varepsilon_{\nu_0}) \overline{J}_{\nu_0} + \varepsilon_{\nu_0} B_{\nu_0} - \overline{J}_{\nu_0} \right]$$

$$= 4\pi \alpha_{\nu_0}^l \varepsilon_{\nu_0} \left(B_{\nu_0} - \overline{J}_{\nu_0} \right)$$

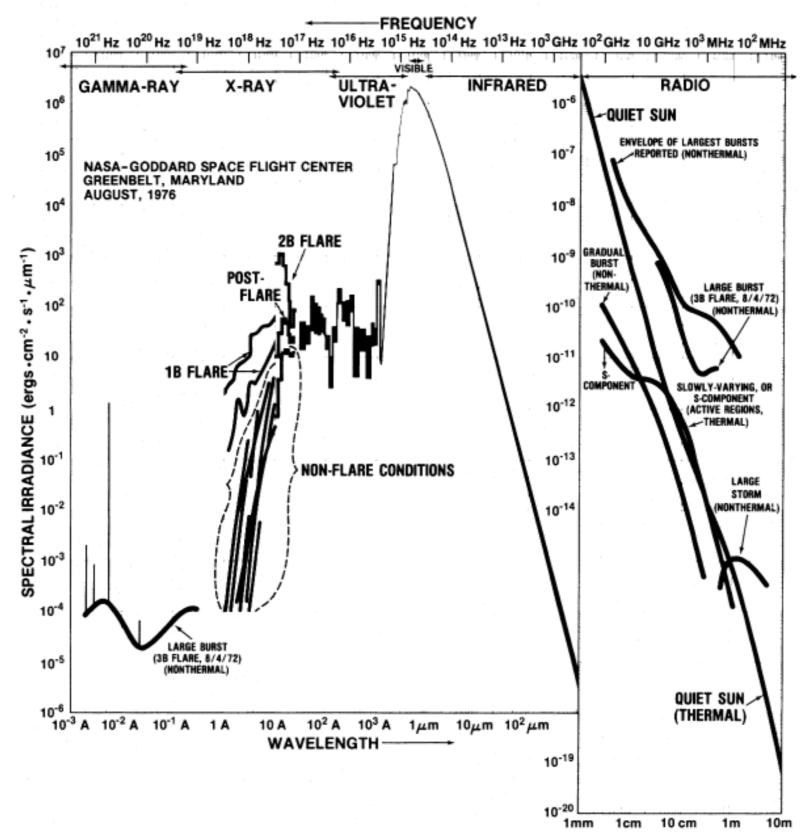
Scattering continua

 $S_{\nu} = B_{\nu}$



Continua from Plane-parallel Stars

THE SOLAR SPECTRUM



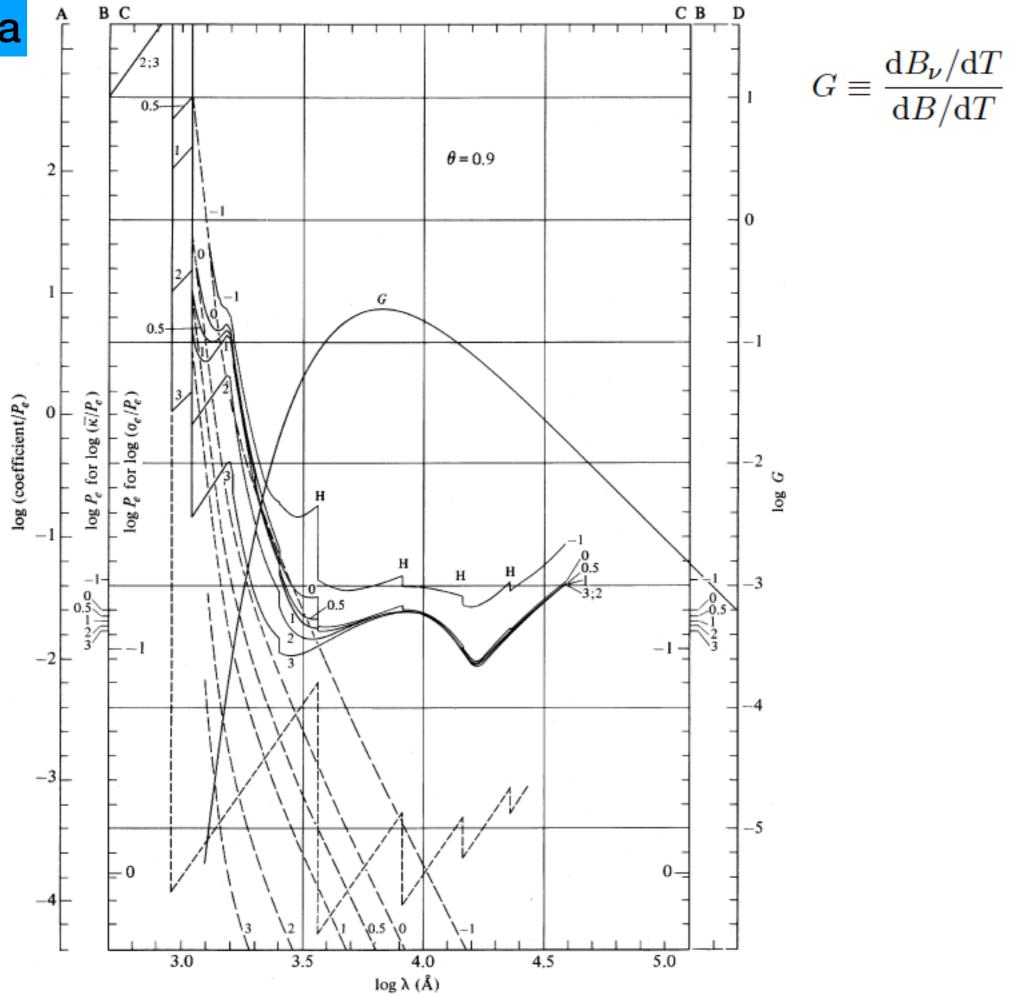
Continua from Plane-parallel Stars

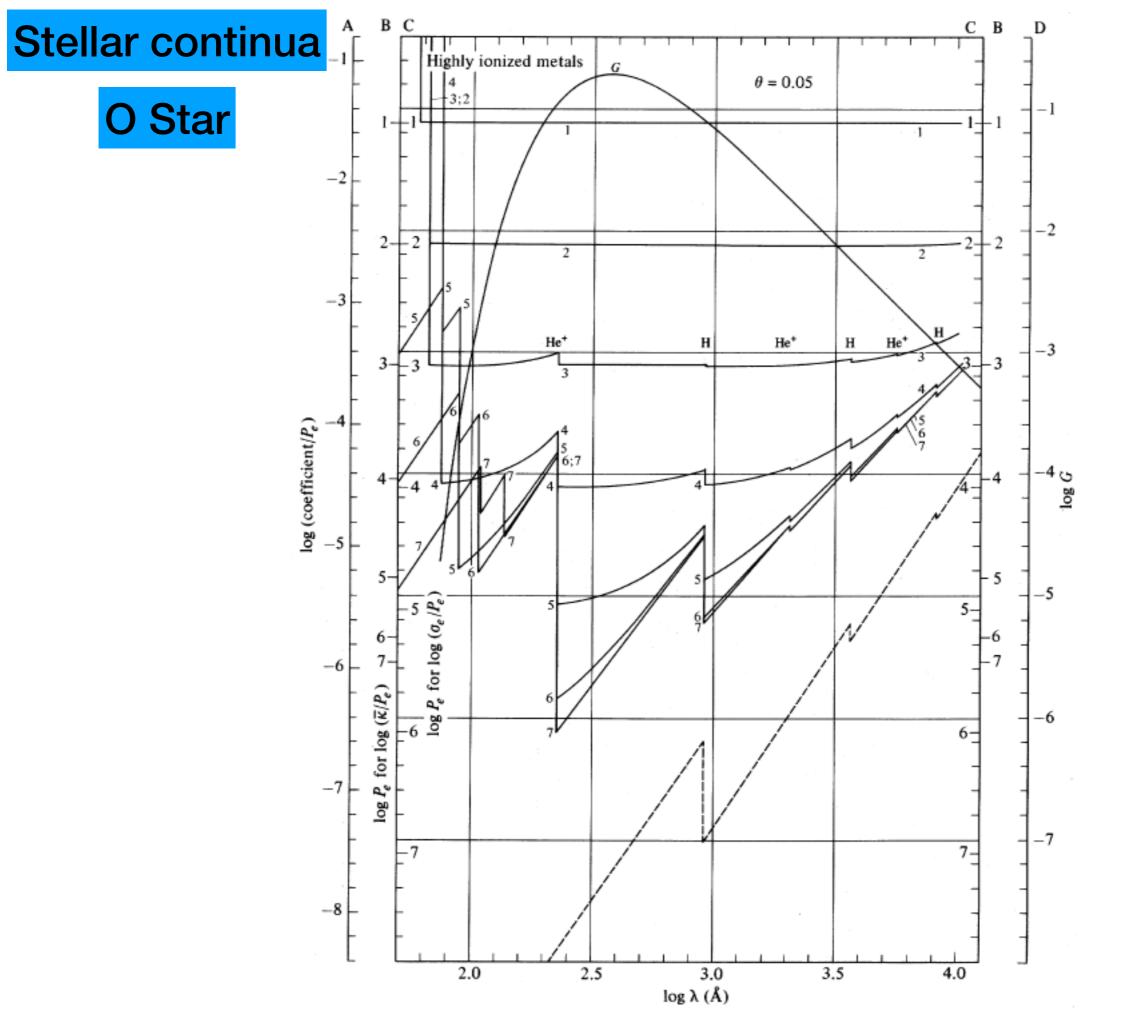
Solar continua

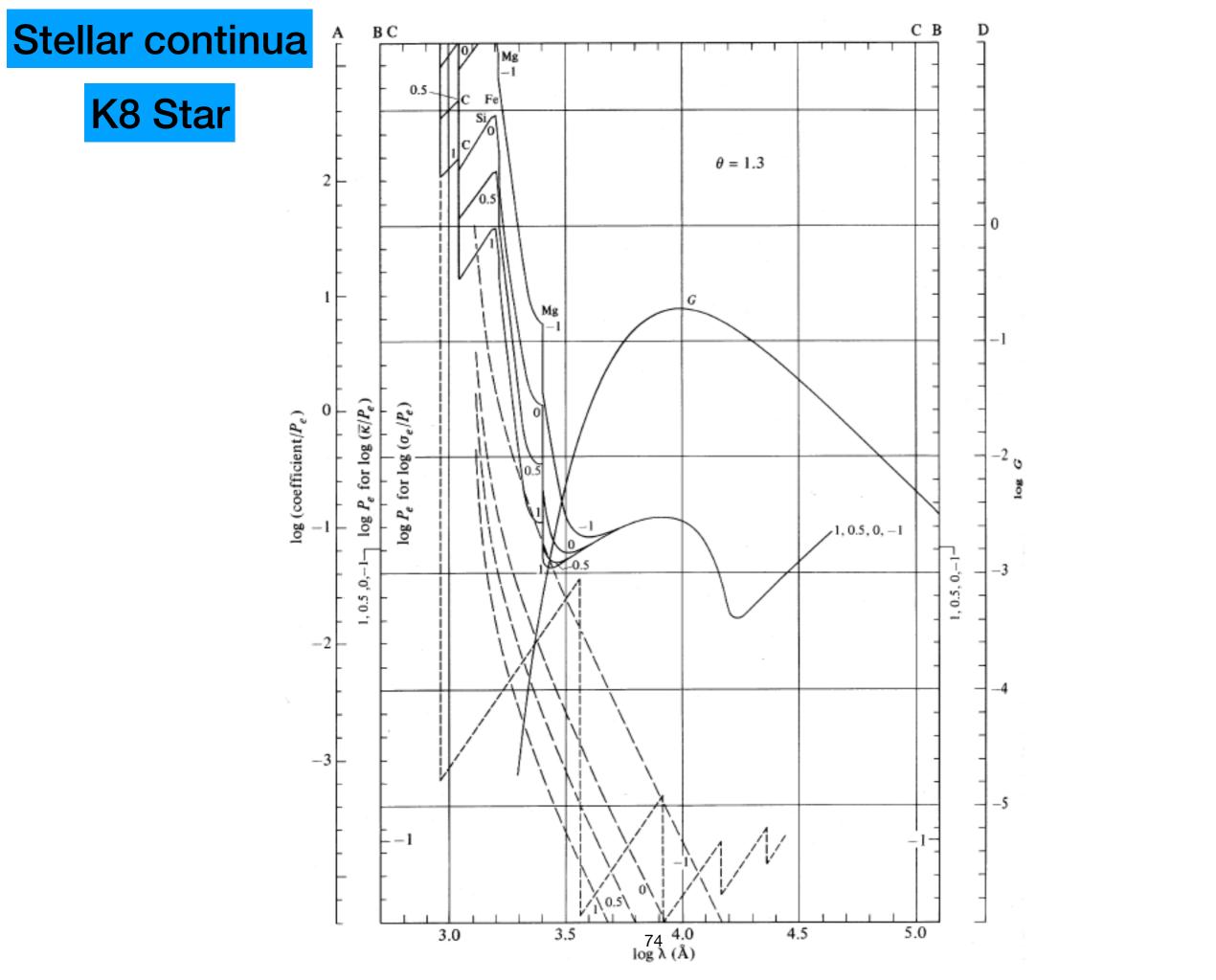
Continuous extinction

- Free-free transitions.
- Bound-free transitions.
- Cyclotron radiation, synchrotron radiation, plasma radiation.
- Thomson scattering.
- Rayleigh scattering.
- Line haze.

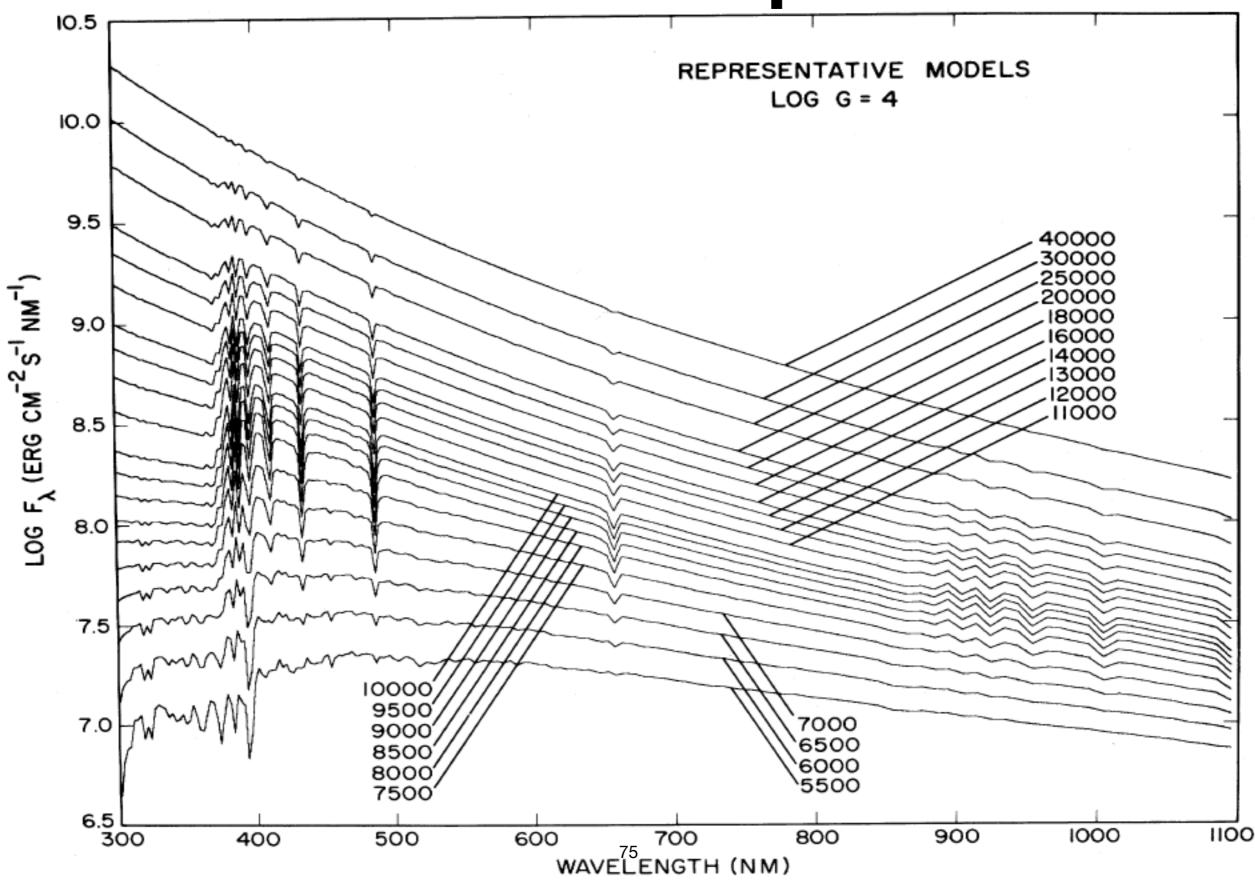
Solar continua







Continua from Plane-parallel Stars



Continua from Plane-parallel Stars

Stellar continua

Hydrogen and helium edges

$$\lambda_n \sim 91.16 \, rac{n^2}{Z^2}$$

n	1	2	3	4	5	6	7	8	
HI n^2/Z^2									
${ m HeII}~n^2/Z^2$	1/4	1	9/4	4	25/4	9	49/4	16	

Balmer jump

F, G

$$\frac{\kappa(\lambda > 364.7)}{\kappa(\lambda < 364.7)} = \frac{\sigma_{\lambda}(\mathrm{H}^{-})\,N(\mathrm{H}^{-})}{\sigma_{\lambda}(\mathrm{H}^{-})\,N(\mathrm{H}^{-}) + \sigma_{\lambda}^{\mathrm{B}}\,N_{\mathrm{H}}(n\!=\!2)} < 1$$

 $= \frac{\kappa(\lambda > 364.7)}{\kappa(\lambda < 364.7)} \sim \frac{\sigma_{\lambda}(\mathrm{H}^{-})N_{\mathrm{H}}(n=1)}{\sigma_{\lambda}^{\mathrm{B}}N_{\mathrm{H}}(n=2)} N_{\mathrm{e}} T_{\mathrm{e}}^{-3/2} e^{h\nu/kT} \sim \frac{\sigma_{\lambda}(\mathrm{H}^{-})}{\sigma_{\lambda}^{\mathrm{B}}} N_{\mathrm{e}} T_{\mathrm{e}}^{-3/2} e^{2h\nu/kT}$ $\frac{\kappa(\lambda > 364.7)}{\kappa(\lambda < 364.7)} \sim \frac{\sigma_{\lambda}^{\rm P} N_{\rm H}(n=3)}{\sigma_{\lambda}^{\rm B} N_{\rm H}(n=2)} \sim e^{-h\nu/kT_{\rm e}}$

O, **B**

Classical abundance determinations

Abundance

$$\begin{split} A_{\rm E} &\equiv \frac{N_{\rm E}}{N_{\rm H}} \\ A_{12}({\rm E}) &\equiv \log N_{\rm E} - \log N_{\rm H} + 12 \\ [X] &\equiv \log X_{\rm star} - \log X_{\rm Sun} \\ [{\rm Fe}/{\rm H}] &= \log (N_{\rm Fe}/N_{\rm H})_{\rm star} - \log (N_{\rm Fe}/N_{\rm H})_{\rm Sun} \\ n_l &= b_l \, n_l^{\rm LTE} = b_l \, \frac{n_l^{\rm LTE}}{N_{\rm E}} \, N_{\rm H} A_{\rm E} \\ \alpha_{\lambda}^l &= \frac{\sqrt{\pi}e^2}{m_{\rm e}c} \, \frac{\lambda^2}{c} b_l \, \frac{n_l^{\rm LTE}}{N_{\rm E}} \, N_{\rm H} \, A_{\rm E} \, f_{lu} \, \frac{H(a,v)}{\Delta\lambda_{\rm D}} \left[1 - \frac{b_u}{b_l} \, {\rm e}^{-hc/\lambda kT} \right] \end{split}$$

Classical abundance determinations

Curve of growth methods

Equivalent width

$$W_{\lambda} = \int_{\text{line}} \frac{I_c - I_{\lambda}^l}{I_c} \,\mathrm{d}\lambda$$

$$W_{\lambda} = \int_{\text{line}} \frac{\mathcal{F}_c - \mathcal{F}_{\lambda}^l}{\mathcal{F}_c} \, \mathrm{d}\lambda$$

Schuster-Schwarzschild atmosphere

$$I_{\lambda} = B_{\lambda}(T_{\rm R}) \,\mathrm{e}^{-\tau_{\lambda}} + B_{\lambda}(T_{\rm L})(1 - \,\mathrm{e}^{-\tau_{\lambda}})$$

$$\tau_{\lambda} = \sigma_{\lambda} N_{\rm i} = \frac{\sqrt{\pi} e^2}{m_{\rm e} c} \frac{\lambda_0^2}{c} \frac{f}{\Delta \lambda_{\rm D}} N_{\rm i} H(a, v) \approx \tau_{\lambda_0} H(a, v)$$

$$D_{\lambda} \equiv \frac{I_{\rm c} - I_{\lambda}}{I_{\rm c}} = \frac{B_{\lambda}(T_{\rm R}) - B_{\lambda}(T_{\rm L})}{B_{\lambda}(T_{\rm R})} \left(1 - e^{-\tau_{\lambda}}\right) = D_{\max}(1 - e^{-\tau_{\lambda}})$$

Classical abundance determinations

Curve of growth methods

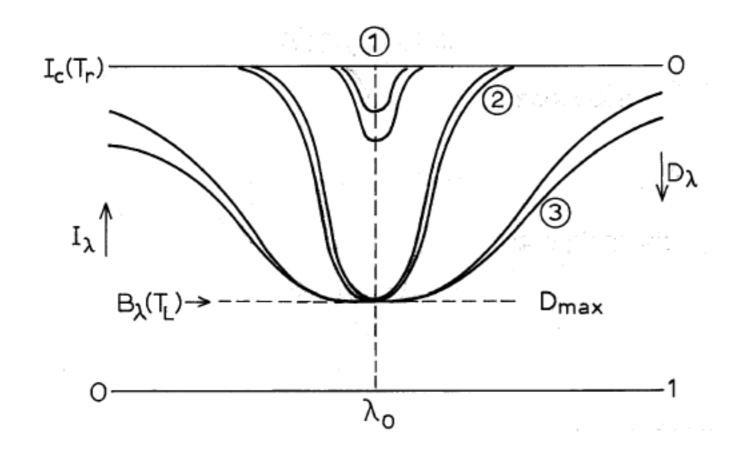
Schuster-Schwarzschild atmosphere

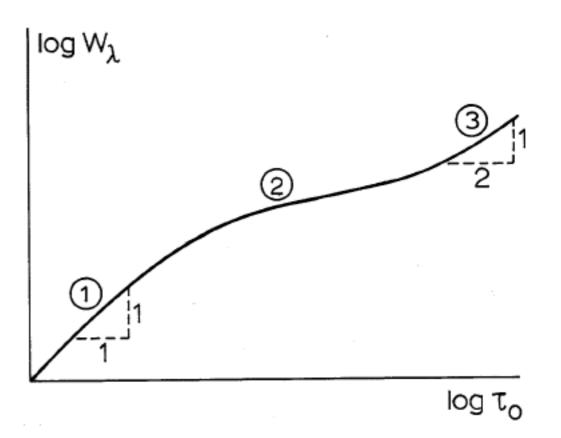
$$D_{\lambda} \equiv \frac{I_{c} - I_{\lambda}}{I_{c}} = \frac{B_{\lambda}(T_{R}) - B_{\lambda}(T_{L})}{B_{\lambda}(T_{R})} (1 - e^{-\tau_{\lambda}}) = D_{\max}(1 - e^{-\tau_{\lambda}})$$
$$D_{\max} \equiv \frac{B_{\lambda}(T_{R}) - B_{\lambda}(T_{L})}{B_{\lambda}(T_{R})}$$
$$W_{\lambda} = D_{\max} \int_{\text{line}} (1 - e^{-\tau_{\lambda}}) \, d\lambda$$

Classical abundance determinations

Curve of growth methods

Schuster-Schwarzschild atmosphere





Classical abundance determinations

Curve of growth methods

Weak lines

 $egin{aligned} & au_\lambda \ll 1 \ & \exp(- au_\lambda) pprox 1 - au_\lambda \ & D_\lambda pprox D_{ ext{max}} au_\lambda \end{aligned}$

$$D_{\lambda} \approx D_{\max} \tau_{\lambda_0} e^{-(\Delta \lambda / \Delta \lambda_D)^2}$$
$$W_{\lambda} \approx D_{\max} \tau_{\lambda_0} \sqrt{\pi} \Delta \lambda_D = \frac{\pi e^2}{m_e c} \frac{\lambda_0^2}{c} f D_{\max} N_i$$

Saturated lines $\tau_{\lambda_0} > 1$

 $W_{\lambda} \approx Q D_{\max} \Delta \lambda_{\mathrm{D}}$

$$Q = 2 - 4$$

Classical abundance determinations

Curve of growth methods

Strong lines

 $\tau_{\lambda_0} \gg 1$ $H(a,v) \approx a/(\sqrt{\pi}v^2) = (a/\sqrt{\pi})(\Delta\lambda_{\rm D}/\Delta\lambda)^2 \sim 1/\Delta\lambda^2$ $\tau_{\lambda} = \tau_{\lambda_0} \frac{a}{\sqrt{\pi}v^2} = \tau_{\lambda_0} \frac{a}{\sqrt{\pi}} \frac{\Delta\lambda_{\rm D}^2}{\Delta\lambda^2}$ $u^2 = \Delta \lambda^2 / (\tau_{\lambda_0} (a / \sqrt{\pi}) \Delta \lambda_D^2)$ $W_{\lambda} = D_{\max} \int_{\lim a} (1 - e^{-\tau_{\lambda}}) d\lambda$ $= D_{\max} \Delta \lambda_{\rm D} \sqrt{\tau_{\lambda_0} (a/\sqrt{\pi})} \int_{U_{\rm max}} (1 - e^{-1/u^2}) \, \mathrm{d}u$ $\sim D_{\rm max} \Delta \lambda_{\rm D} \sqrt{\tau_{\lambda_0} a}$ $W_{\lambda} \sim \sqrt{\tau_{\lambda_0} a} \sim \sqrt{f N_i \gamma_i}$

Classical abundance determinations

Curve of growth methods

Milne-Eddington atmosphere

 $\eta_{\lambda} \equiv \kappa_{\lambda}^{l} / \kappa_{\lambda}^{c}$ $B_{\lambda}(\tau_c) = B_0 + b_c \tau_c$ $B_{\lambda}(\tau_{\lambda}) = B_0 + \frac{b_c}{1+m}\tau_{\lambda}$ $F_{\lambda}(0) = B_0 + \frac{b_c}{1+m} \frac{2}{3}$ $D_{\lambda} \equiv \frac{F_{\rm c}(0) - F_{\lambda}(0)}{F_{\rm c}(0)}$ $= \frac{(2/3) b_{\rm c} \eta_{\lambda}/(1+\eta_{\lambda})}{B_0 + (2/3)b_c}$ $= D_{\max} \frac{\eta_{\lambda}}{1+m}$ $D_{\rm max} = (2/3)b_{\rm c}/(B_0 + (2/3)b_{\rm c})$

Classical abundance determinations

Curve of growth methods

Milne-Eddington atmosphere

 $\eta_v = \eta_0 H(a, v)$

$$\begin{split} W_{\lambda} &= \int_{\text{line}} D_{\lambda} \, d\lambda = D_{\max} \, \Delta \lambda_{\text{D}} \int_{\text{line}} \frac{\eta_{v}}{1 + \eta_{v}} \, dv \\ \frac{W_{\lambda}}{D_{\max} \Delta \lambda_{\text{D}}} &= \int_{\text{line}} \frac{\eta_{0} H(a, v)}{1 + \eta_{0} H(a, v)} \, dv \\ \frac{W_{\lambda}}{D_{\max} \Delta \lambda_{\text{D}}} &= \sqrt{\pi} \, \eta_{0} \quad \text{for } \eta_{0} \ll 1 \\ \frac{W_{\lambda}}{D_{\max} \Delta \lambda_{\text{D}}} &= 2 - 4 \quad \text{for } \eta_{0} > 1 \\ \frac{W_{\lambda}}{D_{\max} \Delta \lambda_{\text{D}}} &= \sqrt{\pi^{3/2} a \, \eta_{0}} \quad \text{for } \eta_{0} \gg 1. \end{split}$$