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Recall: the χ2 distribution and distributions of some
statistics

The sum of squares of N independent standard normal deviates is the χ2 distribution for
N degrees of freedom. The mean and variance of a χ2(N) distribution are N and 2N
respectively.

Due to the CLT, the sample mean of N samples from any population is ∼ N (µ, σ2/N).

For normally distributed iid variables, the sample variance s2 ∼
σ2

N − 1
χ2(N − 1),

with mean σ2 (s is unbiased) and variance
2σ4

N − 1
(s2 is consistent).

Due to the nonlinear relationship, while the variance is well-behaved, the standard

deviation isn’t. s ∼
σ

√
N − 1

χ(N − 1) is not an unbiased estimator of σ.
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Recall: the z- and t−scores
Location+scale distribution −→ location-only distribution:

Z =
X − µ
σ︸ ︷︷ ︸

“standardisation”

∼ N (0, 1), T =
X̄ − µ
S/
√
N︸ ︷︷ ︸

“studentisation”

∼
(

1 +
t2

ν

)−(ν+1)/2
.

P(Z ≤ a) =
1

2

[
1 + erf

( a
√

2

)]
P(|Z | < a) 1σ : 0.68, 2σ : 0.95, 3σ : 0.997

P(|Z | > zα/2)=⇒ zα/2 =
√

2 erf−1
(

1− α
)

.

Usually 1− α = 95%

For ν = 4:
P(Tν=4 = 1) ≈ 0.81;P(Z = 1) ≈ 0.84
P(Tν=4 = 2) ≈ 0.94;P(Z = 2) ≈ 0.98
P(Tν=4 = 3) ≈ 0.98;P(Z = 3) ≈ 0.999

α = 0.1 : tν=4,α/2 ≈ 2.13; zα/2 ≈ 1.64
(print(scipy.stats.t.ppf(1− α/2)))
α = 0.05 : tν=4,α/2 ≈ 2.78; zα/2 ≈ 1.96
α = 0.003 : tν=4,α/2 ≈ 6.44; zα/2 ≈ 2.97

T and Z scores are very different because of behaviour in the
tails!
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Recall: confidence sets

1− α confidence interval for a parameter θ: Pθ(θ ∈ (a, b)) ≥ 1− α, where
a, b : (X1,X2, · · · ,XN) −→ R. (a, b) is the called a 100(1− α)% confidence interval for θ.

θ −→ ~θ: confidence interval −→ confidence set.

In the frequentist paradigm? The probability that a single interval traps the true parameter
value is either 0 or 1!
The CI expresses uncertainty about the process of interval estimation, not about the true
parameter. If the procedure is repeated a large number of times, the resulting intervals will trap
the true parameter value 100(1− α)% of the time.

Perform an experiment each day, trap a parameter θj in a 95% CI on the jth day. As long as you
use the same procedure to construct the CI, it doesn’t even have to be the same experiment!!.
In the long run, 95% of the intervals you constructed would have trapped the true value of
whatever parameter you were exploring.
BUT P(parameter trapped in today’s CI) ∈ {0, 1}.
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Confidence interval: Example 1

Flip a coin N = 100 times. Observe: 60 heads, 40 tails.
What is the probability of getting a head on a single flip of the coin? What is the 95%
confidence interval for this estimate?

ith flip = Bernoulli variable Xi . Final outcome: sum of N � 1 Bernoulli trials:

#Heads Xtot =
N=100∑
i=1

Xi =⇒ Xtot ∼ N (µ, σ2) (CLT).

Let p be the probability of getting a head on a single flip.
Observe: 60 heads =⇒ µ̂ = 100p̂ = 60, p̂ = 0.6, σ̂ =

√
100p̂(1− p̂) = 4.90.

95% confidence interval on the true mean µ:
For a normal distribution, 1− α = 0.95 =⇒ zα/2 = 1.96.

95% CI for µ = [100p̂ − 1.96
√

100p̂(1− p̂), 100p̂ + 1.96
√

100p̂(1− p̂)] = [55.1, 64.9].
=⇒ 95% CI for p = [0.551, 0.649].
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Confidence interval: Example 2

A sample of 10 draws from a standard normal has a mean x̄ = 0.6073 and standard deviation
s = 0.6417. Construct a 95% CI on the true mean of the distribution.

For N < 30, use the t distribution instead of the normal. #dof = ν = N − 1 = 9.
95% CI =⇒ α = 0.05, tν=9,α/2=0.025 = 2.262 (print(scipy.stats.t.ppf(0.95+0.05/2, 9))).

Standard error on the mean: σx̄ =
s
√
N

= 0.2029.

95% CI on true mean µ = [x̄ − σx̄ tν,α/2, x̄ + σx̄ tν,α/2] = [0.1483, 1.066].

In this example, the CI does not trap the true mean µ = 0. However, if this procedure is
repeated a large number of times, about 95% of the intervals will trap the true mean.

In-class assignment: repeat this procedure 1000 times and compute the fraction of the 1000
intervals that trap the true mean (zero). You can use scipy.stats.norm.rvs or
numpy.random.normal to draw from the normal distribution.
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The bootstrap algorithm

How do we estimate parameter errors (variances) and confidence intervals when the underlying
distribution is unknown?
Instead of making assumptions about the population, we could treat the observations as a
hypothetical population and simulate multiple datasets from it. One such resampling technique
is bootstrapping.

Given a sample of N points,

1 draw N points with replacement from this dataset −→ NN ways to do this.
If the original data are Xi with i = 1, 2, · · · ,N}, then randomly select N integers
j ∈ {1, · · · ,N} with repetition and generate X∗

j .

2 compute the statistic/parameter estimate.

3 repeat M times.

The distribution of the recomputed statistic can be used to estimate the parameter uncertainty
and also to generate confidence intervals.

No assumptions about the underlying distribution! Preserves characteristics of original data,
including selection effects such as truncation/censoring.

Parametric bootstrap: fit model to data, perform bootstrap by drawing samples from the model
distribution.
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Bootstrap example

Data: 20 draws from a standard normal.
Mission: Generate CIs for µ and σ.
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Does the CI for µ trap µ = 0?
Does the CI for σ trap σ = 1?

Note:
From CLT, x̄ ∼ N (µ, σ2/N) =⇒

mean(x̄) = µ and σx̄ = σ/
√
N.

Similarly, using the theoretical mean and
variance for the χ distribution, we can estimate
s and σs :

s =
σ

√
N − 1

χ(N − 1) =⇒

s̄ ≈ 0.99σ and σs ≈ 0.16σ.

Results from the simulation are consistent with
the above theoretical estimates.
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Hypothesis testing

Hypothesis: assertion/statement that can be tested using observations.

Typically, a null hypothesis H0 expresses no correlation between observations and the model
suggested (i.e., the data are not significantly different from noise), and the alternate hypothesis
Ha suggests a relationship.

If the probability of the data occurring by chance is below a threshold (significance), then we
reject the null hypothesis.

Frequentist inference: probability that a given hypothesis is correct is either 0 or 1.
Just because we reject H0 on the basis of one set of data does not mean H0 is wrong or Ha is
correct.

Convention: “We were [un]able to reject H0 with significant α”, never “We were able to accept
Ha!!!!1!!ONE!!11!”

However, misused very often (not just in sociology, but also in astronomy).
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The p-value

The p-value expresses the probability that the observed data occurred by chance.
Associated with a pre-specified significance level α, typically taken to be 0.05.

However, this usually assumes that H0 has a normal distribution. There are many cases where
the “standard” threshold is an inadequate description of reality.
Type I error: rejecting the null hypothesis when it is true. Leads us to infer that Ha might be
true (false positive).

Example: roll two dice, note the sum of the numbers displayed. H0 = ‘Dice are fair’.
Suppose we observe that the sum is 12.
P(sum = 12) = 1/36 ≈ 0.028 < 0.05 −→ H0 “is rejected at significance level 0.05”!
The significance should be tailored to the problem being analysed.
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P-values (contd.)

Problem of multiple comparisons: testing many hypothesis with a single dataset increases the
probability of “outliers”.
Data dredging – multidimensional dataset, plot a bunch of CMDs and look for any
correlations... the probability of finding a correlation increases as the number of tests increase!

For more: http://www.tylervigen.com/spurious-correlations.

Can be remedied (e.g., Bonferroni Correction).
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