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Recall: quadratic alternatives to the KS test

There are two important alternatives to the KS test. They are both quadratic ECDF tests.
(o]

A 2
In quadratic ECDF tests, the distance is computed as N / dF (x) [F,,(x) — F(X)j| w(x),

— o0
where w(x) is a weight function to emphasize different regions of the distribution.

The Cramér-von Mises test uses w(x) =1V x.
1

CF()(1—=F(x))  Var(Fa(x))
observations near the tails of the distribution.

The Anderson-Darling test uses w(x)

, placing more weight on

The AD test is more sensitive than the KS test to deviations in the tails of the distribution.
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Recall: Spearman’s rank correlation test

Given a sequence X; of size N, the rank )~(,- of the data point X; is its location in the ordered
sequence. For example, if X =[5.2,2.1,1.0,—1.1,4.3], then X = [5,3,2,1,4].

The relationship between two variables X and Y can be quantified using Pearson’s correlation

.. Cov(X,Y)
coefficient: pxy = .
\/Var(X)Var(Y)
Use Pearson’s correlation coefficient, except with X, Y instead~of~X, Y.
Cov(X,Y
This is Spearman’s rank correlation coefficient, rg = OV(~ Y) —.
\/Var(X) Var(Y)

pxy measures the extent of linear relationship between X and Y. rs, on the other hand,
measures the extent of any monotonic relationship (think of the definition of d;).

rs is much more resistant to outliers!!
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Recall: Bayes' Theorem, reframed

Given some prior information /, we can select a model M that includes parameters 6. Bayes'’
Theorem is then

likelihood prior
pOSteriOr pr_(i)b. distrib. _ p(D|M, 0_” I) p(M7 §|I)
p(M,6(D, 1) =
arr=y p(DI1)
for model and model parameters S——

prior predictive prob.

This form is appropriate for parameter estimation.
Frequentist: parameters are fixed!
Bayesian: this is our degree of belief in a given value of the parameter.

For model selection, we expand the prior: p(M, 8|1) = p(8]M, 1) p(M|I)
(second term on RHS # 1 for model selection).

Statistics for Astronomers: Lecture 14, 2019.04.11
Prof. Sundar Srinivasan - IRYA/UNAM 4




Priors

(from lvezi¢ et al.)

In terms of information, priors can be informative or “non-informative”.

Informative prior
Specific information about parameter(s). Progressively increasing amounts of data = posterior
is evidence-dominated.

Example: “Data from the past ten years suggests that there is a 2% change of rain in Morelia
today between 2 and 3 PM."”

Non-informative prior
Vague information about parameters, typically based on general principles/objective information
(also called objective prior). “Light” modification to observations = posterior is
likelihood-dominated.
Example: “The flux from this star is non-negative” (0 < F < o).
This is also an example of an improper prior, as it does not integrate to unity.
However, we are still OK if the resulting posterior is well-defined
(bus example from last week — p(7|l) x 1/7,t < 7 < ).

The Principle of Indifference is a classic example of an uninformative prior.
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Priors (contd.)

Let p(6|1) = COX for constants C, k (k = 0 gives the uniform distribution).

Define y = a 6 (scaled version of €, similar to changing units).
Activity: What must k be if we want the form of the prior in terms of y to
remain unchanged?

p(y) = Cy¥/a**t.
For k = —1, p(y) = Cy*, same form as p(f). = scale-invariant prior for
0 is p(A]1) x 1/6.

1

This was why, in the bus example, we chose p(7|l) o< 77+.
This is an example of a non-informative prior: “The prior for the scale

parameter is independent of the choice of units.” A similar prior for a
location parameter demands independence from translations.
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Two more probability distributions

We'll use these in the current lecture as well as in the future for Bayesian inference.

r(Oé + /8) -1 -1 .
Beta(a, 8) = ——— x*"}(1 —x)? with x € (0,1) and o, 8 > 0.
F(@)r(5)
Mean: L; mode: L.
a+ a+pB—-2
G (k,6) L k-t [ X} ith x € (0, 00) and k,6 > 0
ammal(k,0) = x"texp|— —| withx ,00) and k, .
6T (k) Pl 9
Mean: k6; mode: (k —1)6.
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Credit: w:User:Marksweep/en:User:Cburnett, CC BY-SA 3.0,

it: : :H : :Krish la, Publi in.
Credit: de:User:Horas/en:User:Krishnavedala, Public domain via Wikimedia Commons.
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Bayesian point/location and interval estimates

Once p(f|data) is computed, we can compute the location estimates (mean, median, mode).

For example, the Bayesian estimator of the parameter mean is 6 = /d@ 0 p(f|data).

We can also compute Bayesian interval estimates, also called posterior intervals or credible
intervals (abbreviated in these lectures as Crl).

One example of a 100(1 — «)% Crl is [a, b] such that
a 00

/ do p(f|data) = /d9 p(f|data) = /2.

Another type of Crl is the highest posterior density (HPD) interval, defined as the narrowest
interval that contains 100(1 — «)% of the posterior probability.
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Numerical computation of HPD interval

Obtain N random deviates x[i] drawn from the posterior density
distribution.

Sort them in ascending order.
For each x[i], find the point that is w = (1 — )N points away.

Compute the widths w[i] = x[w + i] — x][i].

© 6 0 ©

Find the location i = iy corresponding to the smallest width. The
HPD interval is then (x[ip], x[io + w]).

Write your own script! You'll need it for your research if you're using Bayesian inference.
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Example from Wasserman's “All of Statistics”

A coin has an unknown probability 8 of coming down heads. Flipping the coin N times, we
observe s heads. Find the posterior distribution of 6.

Let us pick a prior p(0) = U(0, 1) so that the prior mean is 1/2 (expected for a fair coin).
The likelihood of obtaining s heads is .Z(0) o« 5(1 — §)N—s.

The posterior is then p(f|data) = Z(0)p(6) o< 6°(1 — 0)N—° = Beta(a, 3),
What are « and 3?7 a=s+1, 8=N—-s+1.

. - « s+1

Posterior mean 0 = = )
a—+p3 N+2
We can rearrange the above:
—~ s+1 S 1 s N 1 2
0= = + = — X + = X
N+2 N+2 N+2 N N+2 2 N+2
~~ ~~
data mean prior mean

The posterior mean is thus the weighted average of the data mean and the prior mean. The
effective sample size is then N + 2.
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Prior-dominated posterior

(from Andreon & Weaver, “Bayesian Methods for the Physical Sciences”)

The prior can drive the posterior away from the data (likelihood) if it is steep and/or has very
little overlap with the region where the likelihood dominates.

One example: inferring the true (photon) count rate from a faint source.
| observe a faint source once and get a photon count rate of Sy, = 4 s~ 1. Based on this
observation, what is the constraint on the true photon count rate S from the source?

If the distribution of photon counts from sources in the Universe were uniform (uniform prior),
the photon-counting uncertainty would symmetrically scatter values on either side of the
population mean —> 95% CI from data nicely constrains true count rate.
However, there are way more faint sources in the Universe.

. . dN _ . . . TRT
e.g., in Euclidean space, 3 =p(S) xS 5/2 (steep prior, small intersection with likelihood).
= more likely that a lower photon count gets observed as a higher value due to Poisson
uncertainty. This is a form of Eddington Bias.
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Prior-dominated posterior (contd.)

Prior: p(S) oc S—5/2.

Likelihood of obtaining data S, = 4 from Poissonian uncertainties acting on S:

g(s) o SSobs exp |: — S] = G4 exp [ — S] . Inferring true counts for a faint source (Euclidean space)
= Prior
Posterior p(S|Sops) x S3/2 exp [— S] — Posterior
= 05% HPD
— Gamma(§ 1) 40001 —=— Data + 95% CI
27
3000
—> Mean: 5/2; Mode: 3/2. Can also compute
HPD (homework). 50001 h
1000 1 .
0 . ~n n ‘
0 2 4 6 8 10

Count rate
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