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Recall: quadratic alternatives to the KS test

There are two important alternatives to the KS test. They are both quadratic ECDF tests.

In quadratic ECDF tests, the distance is computed as N

∞∫
−∞

dF (x)
[
F̂n(x)− F (x)

]2
w(x),

where w(x) is a weight function to emphasize different regions of the distribution.

The Cramér-von Mises test uses w(x) = 1 ∀ x .

The Anderson-Darling test uses w(x) =
1

F (x)(1− F (x))
=

1

Var(F̂n(x))
, placing more weight on

observations near the tails of the distribution.

The AD test is more sensitive than the KS test to deviations in the tails of the distribution.
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Recall: Spearman’s rank correlation test

Given a sequence Xi of size N, the rank X̃i of the data point Xi is its location in the ordered
sequence. For example, if X = [5.2, 2.1, 1.0,−1.1, 4.3], then X̃ = [5, 3, 2, 1, 4].

The relationship between two variables X and Y can be quantified using Pearson’s correlation

coefficient: ρXY =
Cov(X ,Y )√
Var(X )Var(Y )

.

Use Pearson’s correlation coefficient, except with X̃ , Ỹ instead of X ,Y .

This is Spearman’s rank correlation coefficient, rS =
Cov(X̃ , Ỹ )√
Var(X̃ )Var(Ỹ )

.

ρXY measures the extent of linear relationship between X and Y . rS , on the other hand,
measures the extent of any monotonic relationship (think of the definition of di ).

rS is much more resistant to outliers!!
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Recall: Bayes’ Theorem, reframed

Given some prior information I , we can select a model M that includes parameters ~θ. Bayes’
Theorem is then

posterior prob. distrib.

p(M, ~θ|D, I )︸ ︷︷ ︸
for model and model parameters

=

likelihood︷ ︸︸ ︷
p(D|M, ~θ, I )

prior︷ ︸︸ ︷
p(M, ~θ|I )

p(D|I )︸ ︷︷ ︸
prior predictive prob.

This form is appropriate for parameter estimation.
Frequentist: parameters are fixed!
Bayesian: this is our degree of belief in a given value of the parameter.

For model selection, we expand the prior: p(M, ~θ|I ) = p(~θ|M, I ) p(M|I )
(second term on RHS 6= 1 for model selection).
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Priors
(from Ivezić et al.)

In terms of information, priors can be informative or “non-informative”.

Informative prior
Specific information about parameter(s). Progressively increasing amounts of data =⇒ posterior
is evidence-dominated.

Example: “Data from the past ten years suggests that there is a 2% change of rain in Morelia
today between 2 and 3 PM.”

Non-informative prior
Vague information about parameters, typically based on general principles/objective information
(also called objective prior). “Light” modification to observations =⇒ posterior is
likelihood-dominated.

Example: “The flux from this star is non-negative” (0 ≤ F <∞).
This is also an example of an improper prior, as it does not integrate to unity.
However, we are still OK if the resulting posterior is well-defined

(bus example from last week – p(τ |I ) ∝ 1/τ, t ≤ τ <∞).

The Principle of Indifference is a classic example of an uninformative prior.
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Priors (contd.)

Let p(θ|I ) = Cθk for constants C , k (k = 0 gives the uniform distribution).

Define y = a θ (scaled version of θ, similar to changing units).
Activity: What must k be if we want the form of the prior in terms of y to
remain unchanged?

p(y) = Cyk/ak+1.
For k = −1, p(y) = Cyk , same form as p(θ). =⇒ scale-invariant prior for
θ is p(θ|I ) ∝ 1/θ.

This was why, in the bus example, we chose p(τ |I ) ∝ τ−1.

This is an example of a non-informative prior: “The prior for the scale
parameter is independent of the choice of units.” A similar prior for a
location parameter demands independence from translations.
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Two more probability distributions

We’ll use these in the current lecture as well as in the future for Bayesian inference.

Beta(α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 with x ∈ (0, 1) and α, β > 0.

Mean:
α

α+ β
; mode:

α− 1

α+ β − 2
.

Gamma(k, θ) =
1

θkΓ(k)
xk−1 exp

[
−

x

θ

]
with x ∈ (0,∞) and k, θ > 0.

Mean: kθ; mode: (k − 1)θ.

Credit: de:User:Horas/en:User:Krishnavedala, Public domain. Credit: w:User:Marksweep/en:User:Cburnett, CC BY-SA 3.0,
via Wikimedia Commons.
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Bayesian point/location and interval estimates

Once p(θ|data) is computed, we can compute the location estimates (mean, median, mode).

For example, the Bayesian estimator of the parameter mean is θ̄ =

∫
dθ θ p(θ|data).

We can also compute Bayesian interval estimates, also called posterior intervals or credible
intervals (abbreviated in these lectures as CrI).

One example of a 100(1− α)% CrI is [a, b] such that

a∫
−∞

dθ p(θ|data) =

∞∫
b

dθ p(θ|data) = α/2.

Another type of CrI is the highest posterior density (HPD) interval, defined as the narrowest
interval that contains 100(1− α)% of the posterior probability.
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Numerical computation of HPD interval

1 Obtain N random deviates x [i ] drawn from the posterior density
distribution.

2 Sort them in ascending order.

3 For each x [i ], find the point that is w = (1− α)N points away.

4 Compute the widths w [i ] = x [w + i ]− x [i ].

5 Find the location i = i0 corresponding to the smallest width. The
HPD interval is then (x [i0], x [i0 + w ]).

Write your own script! You’ll need it for your research if you’re using Bayesian inference.
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Example from Wasserman’s “All of Statistics”

A coin has an unknown probability θ of coming down heads. Flipping the coin N times, we
observe s heads. Find the posterior distribution of θ.

Let us pick a prior p(θ) = U(0, 1) so that the prior mean is 1/2 (expected for a fair coin).

The likelihood of obtaining s heads is L (θ) ∝ θs(1− θ)N−s .

The posterior is then p(θ|data) = L (θ)p(θ) ∝ θs(1− θ)N−s = Beta(α, β),

What are α and β? α = s + 1, β = N − s + 1.

Posterior mean θ̄ =
α

α+ β
=

s + 1

N + 2
.

We can rearrange the above:

θ̄ =
s + 1

N + 2
=

s

N + 2
+

1

N + 2
=

s

N︸︷︷︸
data mean

×
N

N + 2
+

1

2︸︷︷︸
prior mean

×
2

N + 2

The posterior mean is thus the weighted average of the data mean and the prior mean. The
effective sample size is then N + 2.
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Prior-dominated posterior
(from Andreon & Weaver, “Bayesian Methods for the Physical Sciences”)

The prior can drive the posterior away from the data (likelihood) if it is steep and/or has very
little overlap with the region where the likelihood dominates.

One example: inferring the true (photon) count rate from a faint source.
I observe a faint source once and get a photon count rate of Sobs = 4 s−1. Based on this
observation, what is the constraint on the true photon count rate S from the source?

If the distribution of photon counts from sources in the Universe were uniform (uniform prior),
the photon-counting uncertainty would symmetrically scatter values on either side of the
population mean =⇒ 95% CI from data nicely constrains true count rate.
However, there are way more faint sources in the Universe.

e.g., in Euclidean space,
dN

dS
≡ p(S) ∝ S−5/2 (steep prior, small intersection with likelihood).

=⇒ more likely that a lower photon count gets observed as a higher value due to Poisson
uncertainty. This is a form of Eddington Bias.
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Prior-dominated posterior (contd.)

Prior: p(S) ∝ S−5/2.
Likelihood of obtaining data Sobs = 4 from Poissonian uncertainties acting on S :

L (S) ∝ SSobs exp
[
− S

]
= S4 exp

[
− S

]
.

Posterior p(S|Sobs) ∝ S3/2 exp
[
− S

]
= Gamma

(5

2
, 1
)

.

=⇒ Mean: 5/2; Mode: 3/2. Can also compute
HPD (homework).
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