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Recall: Priors
(from Ivezić et al.)

In terms of information, priors can be informative or “non-informative”.

Informative prior
Specific information about parameter(s). Progressively increasing amounts of data =⇒ posterior
is evidence-dominated.

Example: “Data from the past ten years suggests that there is a 2% change of rain in Morelia
today between 2 and 3 PM.”

Non-informative prior
Vague information about parameters, typically based on general principles/objective information
(also called objective prior). “Light” modification to observations =⇒ posterior is
likelihood-dominated.

Example: “The flux from this star is non-negative” (0 ≤ F <∞).
This is also an example of an improper prior, as it does not integrate to unity.
However, we are still OK if the resulting posterior is well-defined

(bus example from last week – p(τ |I ) ∝ 1/τ, t ≤ τ <∞).

The Principle of Indifference is a classic example of an uninformative prior.
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Recall: Bayesian point/location and interval estimates

Once p(θ|data) is computed, we can compute the location estimates (mean, median, mode).

For example, the Bayesian estimator of the parameter mean is θ̄ =

∫
dθ θ p(θ|data).

We can also compute Bayesian interval estimates, also called posterior intervals or credible
intervals (abbreviated in these lectures as CrI).

One example of a 100(1− α)% CrI is [a, b] such that

a∫
−∞

dθ p(θ|data) =

∞∫
b

dθ p(θ|data) = α/2.

Another type of CrI is the highest posterior density (HPD) interval, defined as the narrowest
interval that contains 100(1− α)% of the posterior probability.
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Recall: Numerical computation of HPD interval

1 Obtain N random deviates x [i ] drawn from the posterior density
distribution.

2 Sort them in ascending order.

3 For each x [i ], find the point that is w = (1− α)N points away.

4 Compute the widths w [i ] = x [w + i ]− x [i ].

5 Find the location i = i0 corresponding to the smallest width. The
HPD interval is then (x [i0], x [i0 + w ]).

Write your own script! You’ll need it for your research if you’re using Bayesian inference.
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Recall: Prior-dominated posterior

Prior: p(S) ∝ S−5/2.
Likelihood of obtaining data Sobs = 4 from Poissonian uncertainties acting on S :

L (S) ∝ SSobs exp
[
− S

]
= S4 exp

[
− S

]
.

Posterior p(S |Sobs) ∝ S3/2 exp
[
− S

]
= Gamma

(5

2
, 1
)

.

=⇒ Mean: 5/2; Mode: 3/2. Can also compute
HPD (homework).
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Example of prior-dominated posterior
from Andreon, “Bayesian Methods for the Physical Sciences”.

Andreon et al. 2009 mass measurement for most distant (z ≥ 2) galaxy cluster, JKCS041.

Mass estimate important to constrain
parameters of ΛCDM model.

Observation: log M/M� = 14.6± 0.3.
Prior: Schechter mass function.

Prior changes drastically near observed value,
similar to previous example.

Posterior mean is therefore lower than observed
value: log M/M� = 14.3± 0.3.

(lower by 2x!)
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Recall: Maximum likelihood and Fisher information

The variance associated with the MLE estimate is bounded below by the reciprocal of the Fisher
information (Cramér-Rao Bound).

The square-root of the reciprocal of the Fisher information is therefore a lower bound to the
standard deviation of the MLE estimate.

Given the likelihood L (θ), the Fisher information is given by

I(θ) = E

[(
∂ ln L

∂θ

)2]
(under some regularity conditions) = −E

[
∂2 ln L

∂θ2

]

The Fisher information is related to the curvature of the log-likelihood near the MLE value.
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The Jeffreys prior

One example of a non-informative priorthat is also invariant over transformation of the random
variable (the form of the dependence on the variable doesn’t change).

πJ(θ) ∝
√
I(θ), where I(θ) is the Fisher information.

In the multidimensional case, replace I above with the determinant of the Fisher information
matrix.

As previously noted, the Fisher information is related to the variance. This form of prior is ideal
for scale parameters.

Invariance: Let ψ be some function of θ (e.g., if θ is the probability of a coin flip resulting in a

head, then ψ =
θ

1− θ
, the odds ratio, is a function of θ). We then have

πJ(ψ) = πJ(θ)

∣∣∣∣∣ dθdψ
∣∣∣∣∣ ∝

√
I(θ)

( dθ

dψ

)2
=

√√√√E

[(
∂ ln L

∂θ

)2]( dθ

dψ

)2
=

√√√√E

[(
dθ

dψ

∂ ln L

∂θ

)2]

=

√√√√E

[(
∂ ln L

∂ψ

)2]
=
√
I(ψ).

The form of the dependence on the parameter is the same, regardless of whether it is θ or ψ.
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Jeffreys prior example: a Bernoulli trial

Let θ be the probability of “success” in a Bernoulli trial. We perform one trial and obtain a
value X = x .

The likelihood associated with this observation is L (θ) ∝ θx (1− θ)1−x = Beta(x + 1, 2− x)

=⇒ ln L = x ln θ + (1− x) ln (1− θ) =⇒
∂ ln L

∂θ
=

x

θ
−

1− x

1− θ
=

x − θ
θ(1− θ)

.

I(θ) = E

[(
∂ ln L

∂θ

)2]
=

1

θ(1− θ)

=⇒ πJ(θ) ∝
1√

θ(1− θ)
= Beta

(1

2
,

1

2

)
; prior mean:

1/2

1/2 + 1/2
= 0.5 as expected.

Posterior: p(θ|data) ∝ L (θ)πJ(θ) = Beta(x + 1, 2− x)×Beta
(1

2
,

1

2

)
= Beta

(
x +

1

2
,

3

2
− x
)

.

Posterior mean: 0.5(x + 0.5) = 0.5 (sample mean) + 0.5 (prior mean). Effective sample size: 2.

Note that the posterior and prior are both Beta distributions. In such a case, we say that the
Beta distribution is the conjugate prior to a Bernoulli likelihood. The Beta distribution is also
conjugate to binomial likelihoods.
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Jeffreys priors for a univariate normal distribution

L (x |µ, σ) =
1

√
2πσ2

exp
[
−

1

2

( x − µ
σ

)2]
=⇒ln L = − lnσ −

1

2

( x − µ
σ

)2
.

∂ ln L

∂µ
=
( x − µ

σ2

)
.

E
[(∂ ln L

∂µ

)2]
= E

[( x − µ
σ2

)2]
=

1

σ2
E
[( x − µ

σ

)2]
=

1

σ2
E[z] =

1

σ2
∝ constant.

=⇒ uniform prior for µ.

∂ ln L

∂σ
= −

1

σ
+

(x − µ)2

σ3
;

∂2 ln L

∂σ2
=

1

σ2
− 3

(x − µ)2

σ4
.

E
[
−
∂2 ln L

∂σ2

]
=

1

σ4
E
[
3
( x − µ

σ

)2
− 1
]
∝

1

σ2
.

Therefore, the prior for σ is πJ(σ) ∝
1

σ
=⇒ logarithmic prior for σ.
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More on priors

See https://bit.ly/2KW92Pt for a good discussion of the applicability of
this procedure to problems in fundamental physics.
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