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Recall: Priors

(from lvezi¢ et al.)

In terms of information, priors can be informative or “non-informative”.

Informative prior
Specific information about parameter(s). Progressively increasing amounts of data = posterior
is evidence-dominated.

Example: “Data from the past ten years suggests that there is a 2% change of rain in Morelia
today between 2 and 3 PM."”

Non-informative prior

Vague information about parameters, typically based on general principles/objective information
(also called objective prior). “Light” modification to observations = posterior is
likelihood-dominated.

Example: “The flux from this star is non-negative” (0 < F < o).
This is also an example of an improper prior, as it does not integrate to unity.
However, we are still OK if the resulting posterior is well-defined

(bus example from last week — p(7|/) x 1/7,t < 7 < 0).

The Principle of Indifference is a classic example of an uninformative prior.
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Recall: Bayesian point/location and interval estimates

Once p(f|data) is computed, we can compute the location estimates (mean, median, mode).

For example, the Bayesian estimator of the parameter mean is 6 = /d@ 0 p(0|data).

We can also compute Bayesian interval estimates, also called posterior intervals or credible
intervals (abbreviated in these lectures as Crl).

One example of a 100(1 — «)% Crl is [a, b] such that

a o0
/ do p(f|data) = /d9 p(f|data) = /2.

Another type of Crl is the highest posterior density (HPD) interval, defined as the narrowest
interval that contains 100(1 — «)% of the posterior probability.
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Recall: Numerical computation of HPD interval

© Obtain N random deviates x[i] drawn from the posterior density
distribution.

@ Sort them in ascending order.
© For each x]i], find the point that is w = (1 — )N points away.
© Compute the widths w[i] = x[w + i] — x[i].

© Find the location i = iy corresponding to the smallest width. The
HPD interval is then (x[ip], x[io + w]).

Write your own script! You'll need it for your research if you're using Bayesian inference.
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Recall: Prior-dominated posterior

Prior: p(S) oc S~5/2.
Likelihood of obtaining data S, = 4 from Poissonian uncertainties acting on S:

3(5) o SSobs exp |: — S] = G4 exp [ — S] . Inferring true counts for a faint source (Euclidean space)
m— Prior
Posterior p(S|Sobs) o< S3/2 exp [— 5] — Posterior
= 05% HPD
= Gamma(§ 1) 40001 —=— Data + 95% Cl
27
3000+
—> Mean: 5/2; Mode: 3/2. Can also compute
HPD (homework). 50001 h
1000 1 .
0 . - n ‘
0 2 4 6 8 10

Count rate

Statistics for Astronomers: Lecture 15, 2019.04.22
Prof. Sundar Srinivasan - IRYA/UNAM 5

Example of prior-dominated posterior

from Andreon, “Bayesian Methods for the Physical Sciences” .

Andreon et al. 2009 mass measurement for most distant (z > 2) galaxy cluster, JKCS041.
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Observation: log M/Mg = 14.6 + 0.3. 4 B i
Prior: Schechter mass function. S - .
Prior changes drastically near observed value, a0 = -
similar to previous example. — K ]
Posterior mean is therefore lower than observed —2 — ]
value: log M/Mg = 14.3 £0.3. - L
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Recall: Maximum likelihood and Fisher information

The variance associated with the MLE estimate is bounded below by the reciprocal of the Fisher
information (Cramér-Rao Bound).

The square-root of the reciprocal of the Fisher information is therefore a lower bound to the
standard deviation of the MLE estimate.

Given the likelihood Z(0), the Fisher information is given by

00

2
| 2]
Z(6) = E [(8 k g) ] (under some regularity conditions) = —E [8 822$]

The Fisher information is related to the curvature of the log-likelihood near the MLE value.
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The Jeffreys prior

One example of a non-informative priorthat is also invariant over transformation of the random
variable (the form of the dependence on the variable doesn’t change).

74(0) o< \/Z(6), where Z(0) is the Fisher information.

In the multidimensional case, replace Z above with the determinant of the Fisher information
matrix.

As previously noted, the Fisher information is related to the variance. This form of prior is ideal
for scale parameters.

Invariance: Let 1) be some function of 0 (e.g., if 6 is the probability of a coin flip resulting in a

0
head, then ¢ = 15 the odds ratio, is a function of ). We then have

<o - {5 e - ()

(5]

() = 74(0)

do
dy

o

The form of the dependence on the parameter is the same, regardless of whether it is 6 or 1.
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Jeffreys prior example: a Bernoulli trial

Let 6 be the probability of “success” in a Bernoulli trial. We perform one trial and obtain a
value X = x.

The likelihood associated with this observation is .Z(6) oc 6X(1 — 6)!~ = Beta(x + 1,2 — x)
onZ x 1-x x—6

By 0 1-6 6(1-06)

= InZ=xh6+(1—-x)In(1-0) =

2
oln% 1
I(Q)ZEK a0 >]:9(1—9)

1 11 1/2
— 1(0) X — = Beta(— —); prior mean: _12 = 0.5 as expected.

VO(1 — 6) 272 1/2+1/2

11 13
Posterior: p(f|data) o< Z(6)m;(0) = Beta(x + 1,2 — x) X Beta(a, 5) = Beta(x + 55" x).

Posterior mean: 0.5(x + 0.5) = 0.5 (sample mean) + 0.5 (prior mean). Effective sample size: 2.

Note that the posterior and prior are both Beta distributions. In such a case, we say that the
Beta distribution is the conjugate prior to a Bernoulli likelihood. The Beta distribution is also
conjugate to binomial likelihoods.
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Jeffreys priors for a univariate normal distribution

.Z(Xlu,o):\/;rTexp[—%<X;M)z] :In,i”:—lna—%(xg’u)z.
81;:2” _ (xa—z,u)
E[(ag:%)2] :E[<XU_2M)2] = %EKX;M)? = %E[z] = % o constant.
—> uniform prior for L.
olng 1 (x—p)? P 1 _(x—p)?

(;0’ :—;+ XJ3M ; 8;2 :;_3)(04#
B[ T0E] - L) q) e L

1
Therefore, the prior for o is w; (o) < —
o

—> logarithmic prior for o.
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More on priors

See https://bit.ly/2KWOI2Pt for a good discussion of the applicability of
this procedure to problems in fundamental physics.
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