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Recall: Bayes' Theorem (model selection version)

sampling prob. prior Global prior
for D prob. Jikelihood of M  prob.
~ p(DIM, 1) xp(M[I)  L(M|I)  xp(M|I)
p(M|D,I) = =
posterior predictive o~ el
prob. prior predictive prior predictive
prob. prob.

“Global likelihood" because .Z (M, I) is marginalised over each parameter:

prior prob.
N for 0;
par A
z(Mu):/H do; p(0;IM, 1) Z(6;|M, 1)
=1

J
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Recall: Model selection and Occam’s Razor

Occam’s Razor

Simpler solutions are more likely to be correct than complex ones.

Prefer the simplest solution unless there is sufficient evidence for a more complex one.

The Bayes setup naturally penalises complexity. We can also penalise likelihoods via information
criteria such as the BIC or AIC. For a single-parameter model,

prior prob.
for 0
e R
L(MI1) = [ do pOIM.1) Z(OIM, 1) = Z(BuelM. 1) D
6

Where Oy is the value of 6 at which the likelihood is maximised (i.e., OyiLE is the MLE for
that likelihood).
Qg (called the Occam Factor or Occam Penalty) < 1.

N parameters: likelihood can be written as a product of N such Q2 values, each < 1.
Q can therefore be thought of as a penalty for model complexity, or a penalty for the fraction of
the parameter space ruled out by the likelihood.
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Recall: Information criteria and the posterior odds ratio

Information criteria are related to the Occam Penalty. If k is the number of parameters in a
model, then

Akaike Information Criterion: AIC =2k — 21n Z(@AMLE)
Bayesian Information Criterion: BIC = kIn N — 2In £ (f\g)

By these definitions, the model with the lowest AIC/BIC (note the negative sign for the

maximum likelihood) should be preferred.

The odds ratio, Oj2, in favour of My over 1}42, is the rtatio of the %o terigr probabilities:
ayes' Factor prior odds ratio

—— ——
o, PMID.D) ) ()
p(M2|D, 1) LA M>) w(Ma|l)

Bayes Factor = ratio of global likelihoods.

Jaynes’ scale: Oj2 < 3: “not worth a mention”;
> 10: “strong evidence for M;";
> 100: “decisive evidence for My".
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Multivariate posteriors

(from Andrew Gelman et al., “Bayesian Data Analysis”, 3ed.)

In most of the problems you will deal with in research,

—

0 — ((91,92, v >0Npar) with Npar > 1.

Definition (Joint, conditional, and marginal posteriors)

p(0|data) — joint posterior distribution for all the parameters.
p(01]02,--- ,0n,,.,data) — conditional posterior for 0 at fixed values of all
other components of 6 and data.

p(61|data) — marginal posterior for 61, marginalised over all other
parameters.
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lllustration: normal posterior, joint distribution

For data ~ A" (u, 02), with uniform priors for 1 and In o, the joint

posterior distribution is
1L x — W 2
)
2 Z( o ) ]

i=1
exp [ —

p(u, 0%|data) oc o~ (N+2) exp

1 N
Use > (xi — p)® = Var(x) + (u — X)*
i=1
Var(x)

1
- 2(o/VN)?

p(u, 0%|data) oc o~ (N+2) exp
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(contd.) normal posterior, conditional distributions
1 Var(x)

2
1 p—Xx
2 (0/VN)? 2\ o/vN
p(u|o?, data) obtained by treating o as fixed in the above equation:
1 p—Xx

S\ 2
p(,u\a{data) X exp [— 5 <O-/—\/N>

p(o?|u?, data) obtained by treating j as fixed instead:
1 Var(x) + (u — %)?
2 (o/VN)?

p(p, 02|data) o< 0~ (N+2) exp [—

= ¥ (x,02/N).

p(o®|1?, data) o< (02)~ (V22 exp [—

(o/VN)?
Var(x) + (u— %)2

p(o?|p?, data) oc y—(N+2)/2 exp [— 2—], which is the Inverse-x? distribution for degree N.
Yy
If z ~ x?(N),z71 ~ Inv-x?(N).

= p(0?|u, data) = N(Var(x) + (e — >_<)2) Inv-x?(N).

Defining y =
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(contd). normal posterior, marginal distribution for u

Ci(n=xY
exp 2\ o VN
i o? ar(x — X)?
p(u|data) o< /dazp(u, o?|data) = / 1_2(02)—N/2 exp [_ 1V (x) + (u ) ]
0

1 Var(x)
2 (a/VN)?

o0

p(p, o2|data) o< o~ (N+2) exp [—

J 2 (o/VN)?
. o/V'N)?
As before, define y = Var(E<)/—|— (,u)— )_()2:
oody y N/2 Y "y
p(uldata) 0/ Y o | e e+ 2]

N—-1
Recall: Var(x) = Tsz

2
1 w— X
1+
N—1<g¢N>
— p(p|data) = x + iNt(N —1).

VN

—N/2
o t(N — 1) (Student’s t for N — 1 dof).

— p(p|data)
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(contd). normal posterior, marginal distribution for o2
1 Var(x) 1 fp=x 2
2 (/2| | 2\ oV

p(p, 0?|data) o< 0~ (N+2) exp [—

oo

p(o?|data) o / du p(p,o?|data)

— 0o

0 2
= o (N2) gy | L Var(x) o | L[ B=F
+ p[ 2 (o /VNY? _ZO o p[ 2<a/m>
_ 1 Var(x) | B
X (02) (N+1)/2 exp [— EW ; therefore p(azldata) = N Var(x) InV—XZ(N —1).

Summary: if the data is drawn from a normal distribution, with non-informative priors for x and
o2, the posterior is such that

For known o2, w is distributed normally about the sample mean, with variance 0'2/,\/.

For known 1, o2 has an Inverse-x?2 distribution with degree equal to the sample size.

For unknown o2, @ has a Student’s t distribution around the sample mean.

For unknown u, o2 has an Inverse-x? distribution with degree equal to the sample size minus 1.

For the last two cases, the unknown parameter is a nuisance parameter that has been
marginalised over.

Statistics for Astronomers: Lecture 17, 2019.05.02

Prof. Sundar Srinivasan - IRYA/UNAM 9

(contd). Sampling and visualising the posterior

To sample the posterior, note that
p(u, o°|data) = p(ulo?, data)p(o?|data) = p(o?|u, data)p(u|data).

One way: we can first sample o from the distribution for p(c?|data), then
use those values to sample p from the distribution for p(u|o?, data).
Other way: p first then o?2.

Activity:

1) Generate data: draw Ng,:, = 10 deviates from a normal distribution
with = —5.0 and ¢ = 0.3.

2) Draw Ngamples = 1000 values from the marginal posterior for o, use
these to draw the same number of values from the conditional distribution
for .

3) Plot one histogram each for the distribution of the resulting 1 values
and 02 values (these are the marginalised distributions, since they don't
care about the value of the other parameter).
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(contd). Visualising the posterior via seaborn. jointplot
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j j
Ngata = 10, Nsamples = 1000. Ngata = 1000, Nsamples = 1000.
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Posterior predictive distribution

Given a set of observations (data) and the resulting posterior for the model (“data is drawn
from a normal distribution”), predict the pdf of future data values.
For the problem discussed in this lecture,

~ A (i, ‘72)

p(future dataldata) = //d,u do? p(u,o?|data) p(future datalu, o2, data)
N————
joint posterior
To simulate this distribution, first draw p, o2 from their joint pdf then draw new data values
from A (i, 0?).
We expect that the new data point be distributed around X, the mean of the current dataset.
The expected variance is 02 + 02 /N = (1 + 1/N)o?.

In fact, the posterior predictive pdf for the new data point is a Student’s t distribution with
location X, scale 04/1 + 1/N, and degree N — 1.
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