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Recall: Linear regression

“Linear” parametric regression: linear in parameters, not necessary in the regressor.
Regression function: Y (x) = E[Y |X = x]
Regression model: Y = f (X ) + ε; E[ε] = 0. (Even if X isn’t random, Y is, because of ε.)
ε can be a combination of measurement error and intrinsic variation. Typically one is much
smaller and can be ignored compared to the other.

General procedure:

1 Dependent variable decision

2 Model choice(s)

3 Method of parameter estimation/choice of goodness-of-fit (“objective function”)
Method of moments, least-squares, MLE, Bayesian inference.
– estimate best values for parameters and their variances; confidence intervals.

4 Occam’s Razor model validation/selection.

5 Prediction/classification can then be performed – for a given set of x values, compute y
along with variances and thus confidence intervals for these y .

If the uncertainties εi associated with the dependent variable values yi are drawn from a
distribution with the same variance, the uncertainties are said to be homoskedastic. If they are
drawn from distributions with differing variances, they are heteroskedastic.
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Recall: Ordinary least-squares (OLS) estimation

The objective function for homoskedastic uncertainties is the residual sum of squares:

RSS =
N∑
i=1

(
yi − ymod,i

)2
. Since yi − ymod,i ∼ N (0, σ2),RSS ∼ χ2(N − 2).

Minimising RSS w.r.t. the slope and intercept, we get m̂ =
Sxy

Sxx
and b̂ = ȳ − m̂x̄ .

Variances:

Var(m̂) =
σ2

Sxx
,Var(b̂) = σ2

(
1

N
+

x̄2

Sxx

)

Statistics for Astronomers: Lecture 22, 2019.05.21

Prof. Sundar Srinivasan - IRyA/UNAM 3

Recall: OLS in matrix notation

In general, the regression relation becomes y = Ax.

Linear case: y =


y1

y2

· · ·
yN


N×1

A =


1 x1

1 x2

· · · · · ·
1 xN


N×2

x =

[
θ1

θ2

]
2×1

(θ1 = intercept, θ2 = slope)

The general covariance matrix Σ for heteroskedasstic uncertainties is such that Σij = ρijσiσj ,
where ρij is the correlation coefficient between σi and σj .

For uncorrelated uncertainties, Σ is diagonal: Σ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
· · ·
0 0 · · · σ2

N


N×N

RSS ∝ (y− Ax)TΣ−1(y− Ax), where Σ−1 =
1

σ2
I (homoskedastic uncorrelated uncertainties).

If RSS is minimized w.r.t. x, we get the matrix product version of the results obtained in the
previous slide: x̂ = (ATΣ−1A)−1ATΣ−1y = (ATA)−1AT y.

(ATΣ−1A)−1 is the covariance matrix for the parameters.
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Incorporating detection limits
see Appendix in Sawicki 2012 PASP 124, 1208

A faint source may be undetected during an observation. The detection limit is the upper limit
to the true flux of a faint source.

Assuming that the background noise is normally distributed, the detection limit usually specified
in terms of the background noise. E.g., “the 3-σ upper limit is 0.5 µJy” means that the
probability that the true flux of the faint source is below 0.5 µJy is about 98.75%.

Suppose our model predicts a flux of Fmod for this source. The probability that the source flux
is drawn from this model is

P ∝

Flim∫
−∞

dF exp

[
−

1

2

(
F − Fmod

σ2

)2]
=

√
π

2
σ

[
1 + erf

(
Flim − Fmod

σ

)]
.

For multi-band photometry combining detections and non-detections,

χ2 =

∑
i

(
Fi − Fmod,i

σi

)2

+

∑
j

ln

{√
π

2
σj

[
1 + erf

(
Flim,j − Fmod,j

σj

)]}
.

χ2 minimisation can now be performed numerically to obtain the best-fit model parameters.

Same technique can be applied to bright sources – the integration limits then go from Fsat to∞.
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Robust regression (Outlier rejection)

“Robust statistics provide strategies to reduce the influence of outliers when scientific knowledge
of the identity of the discordant data points is not available.” – Feigelsen & Babu.

In such a case, manual removal of outliers is neither objective nor reproducible.
Many robust regression techniques exist (see Feigelsen & Babu for a summary).

We will discuss one example among these, Bayesian Outlier Rejection (see Hogg et al. (2010)
and Section 8.9 in the AstroML book). The method is similar to assuming a Gaussian mixture
model for the data.

Assumptions:

– The uncertainties associated with “true data” are distributed according to N (0, σ2).

– Outliers are generated from a Gaussian distribution with mean Yb with variance Vb

(substantially larger than σ).

– The probability that a given data point is an outlier in the resulting Gaussian mixture is Pb.
Or, equivalently, we can flag each point according to whether or not we think it is an outlier.
Each point then has an associated flag variable qi (qi = 0 if the point is “bad”, 1 if “good”).

We want to fit a straight line to the “good” points. In addition to m and b, we now have N + 3
extra parameters. The qi are nuisance parameters which we can marginalise over. BUT for a
given point j we could also marginalise over all other parameters except qj to see if it was
flagged as a true data point or an outlier! This is the strength of the Bayesian method.
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Bayesian outlier rejection: likelihood

With ‘fg’ and ‘bg’ referring to the true data (“foreground”) and outliers (“background”),

L =

N∏
i=1

pfg (data|m, b)qi · pbg (data|Yb,Vb)1−qi

=

N∏
i=1

{
1√

2πσ2
i

exp

[
−

1

2

(
yi −mxi − b

σi

)2]}qi
{

1√
2π(Vb + σ2

i )
exp

[
−

1

2

(yi − Yb)2

Vb + σ2
i

]}1−qi

In terms of Pb, instead, we could also write

L =

N∏
i=1

(1− Pb) · pfg (data|m, b) + Pb · pbg (data|Yb,Vb)

=

N∏
i=1

(1−Pb)
1√

2πσ2
i

exp

[
−

1

2

(
yi −mxi − b

σi

)2]
+Pb

1√
2π(Vb + σ2

i )
exp

[
−

1

2

(yi − Yb)2

Vb + σ2
i

]
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Bayesian outlier rejection: priors

For a certain combination {qi}, the distribution is binomial: p({qi}|Pb) =

N∏
i=1

(1− Pb)qiP
1−qi
b .

For Pb,Yb, (“location” parameters) and Vb (“scale” parameter), we can use prior information
or choose uninformative priors.
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Bayesian outlier rejection: marginalisation

The posterior is ∝ likelihood × the priors.

We can marginalise this posterior over the
nuisance parameters qi to obtain the joint
distribution of m and b.

Since the qi are discrete (they take values 0 or
1), marginalising over them means summing
over these possible values instead of
integrations.

Once this is done, we also marginalise over
Pb,Vb, and Yb.

This is a multidimensional problem, perfect for
MCMC. The implementation is part of the
AstroML book (Section 8.9). Part of the
homework this week.

source: AstroML book Sections 5.6.7 and 8.9
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Parameter uncertainties

For the OLS setup, the parameter uncertainties were in the matrix

(ATΣ−1A)−1 =

[
σ2
b σbσm

σmσb σ2
m

]
.

For more complicated situations (which is most
of the time):

Frequentist version:
(1) generate the distributions for b and m using
bootstrap/jackknife.

σ2
m =

1

B

N∑
j=1

(
mj −m

)2

(m is the estimate using all the data, mj is from
partial samples).
(2) use these distributions to compute CIs for b
and m.

Bayesian version:
(1) generate the posterior distribution of b and
m.
(2) use these to compute the MAP values and
CrIs.

In general, the off-diagonal terms will be
non-zero (the parameters will be correlated).

from AstroML book Section 8.9
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To do

Install AstroML if you haven’t already!

Read through the first 4 sections of Hogg et al. 2010 for more details, and because you’ll need
that for the homework.
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