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Note: Solutions to Questions 5, 6, 7, and 8 use modules in the script here.

1. (a) The marginal pdf for X is

pX(X) =

∞∫
x

pX,Y (X , y)dy =

∞∫
X

e−ydy = e−X

The marginal pdf for y is

pY (y) =

y∫
0

pX,Y (X , y)dX = e−y
y∫

0

dX = ye−y.

(b) The conditional probabilities are

pX(X |y) =
pX,Y (X , y)

pY (y)
=

e−y

ye−y
=

1

y
.

pY (y|X) =
pX,Y (X , y)

pX(X)
=
e−y

e−X
= eX−y.

(c) Since pX(X |y) 6= pX(X), X and y are not independent.

2. (a) If t = uα,
dt

du
= αuα−1 = αt/u =⇒ du

dt
= u/(tα) =

t−1+1/α

α
. Therefore,

pT (t) = pU(u)
du

dt
=
t−1+1/α

α

Comparing the above equation with the desired distribution, we can draw from a uniform
distribution and then set t = u3.

(b) Let the normalisation constant be C, so that

C

∞∫
−∞

dX

X2

ν
+ 1

= 1 (1)
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Substituting X =
√
ν tan θ, so that θ ∈ (−π/2, π/2), Equation (1) becomes

C

π/2∫
−π/2

dθ
√
ν sec2 θ

sec2 θ
= C

√
ν

π/2∫
−π/2

dθ = π
√
ν C = 1 =⇒ C =

1√
ν π

The CDF for X is given by

FX(X) =
1

π
√
ν

X∫
−∞

dy

y2

ν
+ 1

=
1

π

[
tan−1

( X√
ν

)
+
π

2

]
=

1

π
tan−1

( X√
ν

)
+

1

2

If we set Y ≡ FX(X), then the Probability Integral Transform ensures that Y is a uniform random
variable. We can invert this to write X in terms of Y :

y = FX(X) =
1

π
tan−1

( X√
ν

)
+

1

2
=⇒ X =

√
ν tan

[
π
(
y − 1

2

)]
(2)

Thus, we can draw uniform random variates Y from U(0, 1) and then relate X to Y using
Equation (2) to ensure that X will have the desired distribution.

3. The studentised version of the sample mean is T =
m− µ
s/
√
N

, where N is the number of observations.

T has the Student’s t distribution with ν = N−1 degrees of freedom (and not N , because the sample
standard deviation s is computed using the sample mean as an estimator for the unknown population
mean).

Therefore, T has mean 0 and variance
ν

ν − 2
=
N − 1

N − 3
.

The problem asks about the quantity
m− µ
s

, which is
√
N times T . It has the same distribution as

T , with the same mean (zero), but its variance is N times Var[T ], which is N
N − 1

N − 3
= 27.27.

4. The likelihood for N data points Xi, i = 1, · · · , N is

L (µ) ∝
N∏
i=1

exp (−|Xi − µ|) =⇒ ln L (µ) = constant−
N∑
i=1

|Xi − µ|

The term inside the summation is Xi−µ for Xi > µ and µ− Xi for Xi < µ. The derivative of each term
is, accordingly, minus or plus 1. Therefore,

∂

∂µ
ln L (µ) = (# of points with values > µ)− (# of points with values < µ)

That is, the derivative equals the net number of points with values above µ. Since the MLE µ̂ is the
value of µ at which the derivative vanishes, it is also the value of µ that has an equal number of data
points on either side of it. This is the definition of the median of the data set. Therefore,
µ̂ = Median({Xi}). The sample median minimises the absolute deviation, just as the sample
mean minimises the (signed) deviation.
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Figure 1: Left : the lower and upper limits of the central and shortest 20% CIs plotted onto the PDF and
EDF for Problem 5. Right : the 75% central CI plotted onto the PMF for Problem 6.

5. The PDF and EDF are shown in Figure 1. The distribution is bimodal; although the global maximum
is located at X = 7.5, there is also a local maximum at X ≈ −3. These peaks are separated by a region
of low probability (1 . X . 6). From the empirical distribution, it is clear that the region around
the global maximum has at least 40% of the total probability mass. Therefore, the 20% shortest CI
must be inside the range [5, 8].

The module prob5 in midterm.py first computes the empirical distribution function for the sample.
It then computes the central and shortest CIs:
The central 20.0% CI is [-1.2, 6.6].

The shortest 20.0% CI is [7.1, 8.0].

The lower and upper limits of each interval are shown on the EDF in the figure (filled circles), and
it is easy to verify that the enclosed probability in each case is 20%.

6. As the SN events are independent of each other, this is a Poisson problem. The rate parameter is
7 yr−1× 1 yr = 7. For a Poisson problem, the expectation value equals the rate parameter; our
symmetric CI is then centred at 7. The module prob6 in midterm.py stretches outward in both
directions from this centre and selects the symmetric interval enclosing a probability as close to 75%
as possible. This turns out to be the interval [4, 10]. Figure 1 shows this CI overlaid onto the PMF
for the problem.

7. The module prob7 in midterm.py is used for this problem. It is a Poisson problem, since we are
counting photons. Therefore, the variance associated with N counts is also N . For this problem, we
assume that the count in each bin is independent of the counts in the other bins.

(a) To compute the mean continuum counts, we sum over the eight bins (four on either side of the
line region) and divide by eight. We can use the Bienaymé Identity to compute the variance on
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this mean, which turns out to be the mean divided by eight.

Ccont.mean =
1

8

(
C1 + C2 + C3 + C4 + C12 + C13 + C14 + C15

)
Var[Ccont.mean] =

1

82

(
Var[C1] + Var[C2] + Var[C3] + Var[C4] + Var[C12] + Var[C13] + Var[C14] + Var[C15]

)
=

1

82

(
C1 + C2 + C3 + C4 + C12 + C13 + C14 + C15

)
=

1

8
Ccont.mean (3)

The standard error is then the square root of this variance. The script outputs
The mean continuum count is 1415 ± 13 photons.

(b) There are a total of seven bins in the line region. The total continuum contribution is therefore
seven times the mean continuum count. The variance on this total is 72 times the variance on
the mean continuum count.

Ccont.underline = 7 Cmean =⇒ Var[Ccont.underline] = 72 Var[Cmean] =
72

8
Ccont.mean (4)

The standard error is then the square root of this variance. The script outputs
The total continuum count under the line is 9903 ± 93 photons.

(c) The total count in the line region is the sum of the counts in each of the seven bins. The
variance on this total is the sum of the variances of the counts in each bin. When the continuum
contribution is subtracted from the total count, the variance on this difference is nothing but
the sum of the variance on the total count and the variance on the continuum contribution.

Cline,total =
11∑
i=5

Ci − Ccont.underline =
11∑
i=5

Ci − 7 Ccont.mean

Var[Cline,total] =

11∑
i=5

Var[Ci] + Var[Ccont.underline] =

11∑
i=5

Ci +
72

8
Ccont.mean (5)

The standard error is then the square root of this variance. The script outputs
The integrated line flux is 7177 ± 160 photons.

(d) The advantage of reporting the integrated flux in the line as opposed to the flux at line centre
is the increased signal-to-noise ratio in the result. Due to the Bienaymé Identity, the standard
errors adding in quadrature means that the relative uncertainty on the total is lower than that
of just the central value. The script outputs:
The integrated line flux is 7177 ± 160 photons.

The line flux at the line centre is 1861 ± 68 photons.

The signal-to-noise in the integrated flux is ≈ 45, whereas the signal-to-noise in the central flux
is ≈ 27.

8. (a) There are four bins (three nearest-neighbour pairs) on either side of the line region, leading to
a total of six covariance terms added to the computation of the mean continuum level. The
following must be added to the RHS of Equation 3:

Cov[C1, C2] + Cov[C2, C3] + Cov[C3, C4] + Cov[C12, C13] + Cov[C13, C14] + Cov[C14, C15].
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In general, for each of these terms, Cov[Ci, Ci+1] = 0.5
√

Var[Ci]Var[Ci+1] = 0.5
√
CiCi+1. Since

the standard error adds this term in quadrature to the other terms in Equation 3, the net effect
is not very large. In the absence of any covariance, the covariance matrix for the first four
wavelength bins is a diagonal matrix, with the diagonal elements equal to Var[Ci] (i = 1, 2, 3, 4).
With covariance among nearest-neighbour bins, the off-diagonal elements closest to the diagonal
are now populated. That is,

Σ =



Var[C1] Cov[C1, C2] 0 0

Cov[C1, C2] Var[C2] Cov[C2, C3] 0

0 Cov[C2, C3] Var[C3] Cov[C2, C4]

0 0 Cov[C3, C4] Var[C4]



=



C1 0.5
√
C1C2 0 0

0.5
√
C1C2 C2 0.5

√
C2C3 0

0 0.5
√
C2C3 C3 0.5

√
C3C4

0 0 0.5
√
C3C4 C4


(6)

The prob8 module outputs:
The covariance matrix for the first four wavelength bins:

[[1337 676 0 0]
[ 676 1365 705 0]
[ 0 705 1454 688]
[ 0 0 688 1299]]

(b) The prob7 module, when run with the argument rho = 0.5, outputs:
The mean continuum count is 1415 ± 16 photons.

There is a modest increase in the standard error associated with the mean continuum count (13
photons to 16 photons), which propagates into the standard error on the line flux.

The variance associated with the line flux also increases, and has not been accounted for in the
above as the problem only required us to compute the change in variance in the continuum.
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