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1. Notational confusion: I apologise that the parameters for the lower and upper limits
for the mass function were denoted m1 and m2. To avoid confusion with the data points
mi, they are henceforth referred to as M1 and M2.

(a) The initial mass function

pM(m) = C m−α α > 1, M1 ≤ m ≤M2

is nothing but a probability density function for the number of stars. Thus, the number of stars
with masses between m and m+ dm is given by Cm−αdm.

As it is a PDF, it should be normalised (i.e., it should integrate to unity). We can use this
normalisation constraint to compute the value of C in terms of the parameters α,M1, and M2:

M2∫
M1

C m−α dm =
C

α− 1

(
M1−α

1 −M1−α
2

)
=
C

β

[
M−β

1 −M−β
2

]
= 1, with β ≡ α− 1 > 0

Therefore,

C =
β

M−β
1 −M−β

2

(1)

Note that C depends on the parameters! We must be careful not to ignore it when
differentiating the likelihood.

(b) The likelihood that a star observed at random has a mass in the range mi and mi+dm is Cmα
i .

As the observations are independent, the combined likelihood of obtaining a set of masses
{m1,m2, · · · ,mN} is

L =

N∏
i=1

Cm−α
i =⇒ ln L = N lnC − α

N∑
i=1

lnmi (2)

Using Equations (1) and (2), we first compute the partial derivatives of lnC with respect to

each of the parameters (recall: since β = α− 1, it is convenient to find β
∧

, from which α
∧

can be
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readily computed):

∂
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We then use these relations to evaluate the partial derivatives of ln L :

∂
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∂
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2

(3)
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(4)
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β
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)
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− lnm

 , (5)

where lnm is the sample mean of lnmi.

The standard procedure to find the MLE values requires us to set the derivatives
(Equations (3) and (4)) to zero. This method does not give us a meaningful solution
for this particular problem. Instead, we will have to investigate the functional dependence
of the likelihood on M1 and M2 from Equations (1) and (2).

The denominator of Equation (1) increases if either M1 decreases or M2 increases, increasing lnC
and therefore ln L . The likelihood therefore achieves its largest value if the smallest (largest)
possible data value is used as an estimate for M1 (M2). Accordingly, we have

M1

∧
= min(mi) = m(1); M2

∧
= max(mi) = m(N)

That is, the ML estimates for the lower and upper mass limits of the IMF are the
smallest and largest masses in the data set. m(i) refers to the ith order statistic.

(c) Having found M1

∧
and M2

∧
, to find α

∧
, we can use the standard method and equate Equation (5)

to zero. The problem also gives us the value of the sample mean of lnmi. Equation (5) to zero

gives us a non-linear equation for which β
∧

are the roots. We can use a root-finder algorithm
to solve for this exponent. The script provided here uses the scipy.optimize.root scalar

package to get β
∧

≈ 1.24, or α
∧
≈ 2.24.
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2. Since supernova explosions are independent events, we can assume Poisson statistics.

In solving problems involving the Poisson distribution, remember that the Poisson
rate parameter λ must be dimensionless. Always use this as a sanity check!

Each galaxy is observed for a different time ti, which means the expected number of supernova
events (= the Poisson rate parameter!) is different for each galaxy.

The Poisson rate parameter λi for each galaxy is the product of the explosion rate p (dimensions:
time−1) and the exposure time ti (dimensions: time). The total likelihood is therefore

L =
N∏
i=1

λni
i e

−λ

ni!
=

N∏
i=1

(pti)
nie−pti

ni!
=⇒ ln L = constant +

N∑
i=1

(ni ln p− pti)

We set the first derivative of the log-likelihood to zero to compute the MLE for p:

(
∂ ln L

∂p

)
p
∧

=

N∑
i=1

(ni
p
∧ − ti

)
= 0 =⇒ p

∧
=

N∑
i=1

ni

N∑
i=1

ti

(a)(b) The Expected Fisher information is

I(p) ≡ −E

[
∂2 ln L

∂p2

]
= E

[
1

p2

N∑
i=1

ni

]
=

1

p2

N∑
i=1

E[ni]

For Poisson statistics, E[ni] = λi = pti; therefore, the Cramér-Rao Lower Bound on the variance
is

CRLB ≡ 1

I(p)
=

p
N∑
i=1

ti

Since the supernovae in different galaxies are independent occurrences, we can also define the

total number of events N =
N∑
i=1

ni and the total observing time T =
N∑
i=1

ti. In terms of these

quantities,

p
∧

=
N

T
and CRLB(p

∧
) =

p
∧

T
=
N

T 2

In other words, the standard error on p
∧

is

√
N

T
. This is consistent with the standard deviation

on the total number of events N being
√
N as a result of Poisson statistics.
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