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1. If X ∼ N (µ, σ2), the likelihood of observing a value X = X is given by
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The first-order partial derivatives w.r.t. the parameters are
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The first derivative w.r.t. µ is already in a convenient form (numerator is the deviation of the data
from the population mean, denominator is a function only of the variance), so we can compute the
Fisher Information as
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Therefore, the Jeffreys prior for the population mean has the Uniform distribution.

For the standard deviation, we compute the second-order partial derivative to compute the Fisher
Information and the Jeffreys prior:
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√
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That is, the Jeffreys prior for the standard deviation is the logarithmic prior (since lnσ is uniformly
distributed).

2. (a) The likelihood for X successes in N trials is

L (θ) =

(
N

X

)
θX (1− θ)N−X =⇒ ln L (θ) = constant + X ln θ + (N − X) ln (1− θ), (1)
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and its derivative can be written in terms of the mean E[X ] = Nθ and Var[X ] = Nθ(1− θ):
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The square root of the Fisher Information is then√√√√E
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so that the Jeffreys prior is πJ (θ) = Beta
(
1
2 ,

1
2

)
.

(b) The mean and variance of Uniform(0, 1) are 1
2 and 1

12 . The mean and variance of Beta
(
α, β

)
are α

α+β and αβ
(α+β)2(α+β+1)

. Setting α = β = 1
2 , the mean and variance of the Jeffreys prior are

1
2 and 1

8 respectively. Both prior distributions have the same mean, and the Jeffreys prior has a
higher variance around this mean. A higher variance means less information. This is consistent
with the Jeffreys prior being non-informative.

(c) The prior predictive distribution for data X is p(X) =

1∫
0

dθ p(X |θ) π(θ), where p(X |θ) is numeri-

cally equal to the likelihood given by Equation (1). For the Uniform prior, we get
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)
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=
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That is, each of the N + 1 values of X (0 ≤ X ≤ N) is equally likely. The prior predictive
distribution for the data is therefore a discrete uniform distribution.
For the Jeffreys prior,

p(X) =

1∫
0

dθ
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)
θX (1− θ)N−X 1

π
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2 (1− θ)−
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2 =
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This function has maxima at X = 0 and X = N of value
Γ(N + 1

2)

Γ(N + 1)
≈ 0.032, and its shape reflects

that of the Jeffreys prior, which places a large weight at both extremes. Figure 2 compares the
predictive distributions corresponding to the two priors.

(d) We will use the following results for this part of the problem:

E[Beta(α, β)] =
α

α+ β
; Var[Beta(α, β)] =

αβ

(α+ β)2(α+ β + 1)

The posterior distribution for θ is obtained from Bayes’ Theorem: p(θ|X) =
p(X |θ) π(θ)

p(X)
.

Using the likelihood from Equation (1), for the Uniform prior, the posterior is distributed accord-

ing to Beta(X +1, N−X +1), the mean and variance for which are
X + 1

N + 2
and

(X + 1)(N − X + 1)

(N + 2)2(N + 3)
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Figure 1: Left : distributions for θ according to the Uniform (black dashed) and Jeffreys (blue) priors,
with the corresponding means and standard deviations shown. Right : prior predictive distributions for the
Uniform (black dashed) and Jeffreys (blue) priors.

(0.4731 and 0.01582) respectively.

The product of the likelihood with the Jeffreys prior results in a posterior distributed according

to Beta(X + 1
2 , N − X + 1

2). Its mean and variance are
X + 1

2

N + 1
and

(X + 1
2)(N − X + 1

2)

(N + 1)2(N + 2)
(0.4730

and 0.01582) respectively.

Given that both X and N are large, the posterior shapes and the associated means and variances
are almost identical for the two priors (Figure ??). This demonstrates the insensitivity to the
prior for large datasets (the posterior is data-dominated rather than prior-dominated).

(e) The required probability can be computed using the cumulative distributions of the posteriors:

N, x = 1000, 403

print(1 - scipy.stats.beta.cdf(0.5, x+1, N-x+1)) #for the Uniform prior

print(1 - scipy.stats.beta.cdf(0.5, x+1/2, N-x+1/2)) #for the Jeffreys prior

The required probabilities are 3.86× 10−10 and 3.78× 10−10 respectively.

(f) The posterior predictive distribution for a new observation X̃ is given by p(X̃ |X) =

1∫
0

dθ p(X̃ |θ) p(θ|X).

The observation X̃ takes values 0 and 1. We compute the above integral for both these values
for both priors below.

For the Uniform prior, p(X̃ = 0|X) =
Γ(N + 2− X)

Γ(N + 1− X)

1

N + 2
=

N + 1− X

N + 2
≈ 0.527, so that

p(X̃ = 1|X) = 1− p(X̃ = 0|X) =
x+ 1

N + 2
≈ 0.473.

3



Figure 2: Posterior distributions for θ according to the Uniform (black dashed, shifted up for clarity) and
Jeffreys (blue) priors, with the corresponding means and standard deviations shown.

Similarly, for the Jeffreys prior, p(X̃ = 0|X) ≈ 0.527 and p(X̃ = 1|X) ≈ 0.473.

Due to the large amount of data that has already been obtained for the coin, and because the
outcome of each coin flip is independent of the previous outcomes, the probability of obtaining
a head or tail on the next coin flip is very tightly constrained.
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