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Review

Random variables.

Probability distributions: discrete (PMF) and continuous (PDF).
Populations vs. samples.

The cumulative distribution function and its inverse (the quantile function).
Expectation value: mean and variance.




Variance, contd.

X draws values from a distribution px(x). A sample consisting of multiple draws for X will have
points distributed around E[X].

Recall: Var[X] = E[(X — E[X])?] = E[X?] — (E[X])?; the variance is non-negative by definition.
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Variance, contd.

X draws values from a distribution px(x). A sample consisting of multiple draws for X will have
points distributed around E[X].

Recall: Var[X] = E[(X — E[X])?] = E[X?] — (E[X])?; the variance is non-negative by definition.
E is a linear operator. What about Var?

For any constant «, E[a] = a. What is Var[a]?
Effect of shifting: E[X + o] = E[X] 4+ a. What is Var[X + o]?
Effect of scaling: E[aX] = a E[X]. What is Var[aX]?

Practice:
import numpy as np
x = np.random.uniform(size = 20)
x.mean()
x.var()
(x+3) .mean()
(x+3) .var()
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Variance, contd.

X draws values from a distribution px(x). A sample consisting of multiple draws for X will have
points distributed around E[X].

Recall: Var[X] = E[(X — E[X])?] = E[X?] — (E[X])?; the variance is non-negative by definition.
E is a linear operator. What about Var?

For any constant «, E[a] = a. What is Var[a]?
Effect of shifting: E[X + o] = E[X] 4+ a. What is Var[X + o]?
Effect of scaling: E[aX] = a E[X]. What is Var[aX]?

Practice:
import numpy as np
x = np.random.uniform(size = 20)
x.mean()
x.var()
(x+3) .mean()
(x+3) .var()

Linear combination: E[aX + 8Y] = o E[X] + 8 E[Y]. What is Var[aX + 8Y]?
(use the definition for variance above)

—
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If XLY, then the Y deviations and X deviations are independent, and this term vanishes.
—> the term quantifies a variance-like dependence between X and Y.
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Covariance

Var[aX + BY] = o2 Var[X] + 82 Var[Y] + 2a8 E[(X — E[X])(Y — E[Y])] 1)

If X = Y, then this term becomes E[(X — E[X])?] = Var[X].

If XLY, then the Y deviations and X deviations are independent, and this term vanishes.
—> the term quantifies a variance-like dependence between X and Y.

If X, Y not independent::
(X —E[X])(Y —E[Y]) > 0 if both deviations are in the same direction,
(X —E[X])(Y —E[Y]) < 0 if deviations are in opposite directions.

The third term in Eq (1) is the mean of the products of X and Y deviations.

Definition (Covariance)

Therefore, Var[aX 4 BY] = o? Var[X] + 2 Var[Y] + 2a3 Cov(X, Y).

If the two variables are uncorrelated, then the third term vanishes.

—
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Covariance matrix

Pairwise comparison of N random variables — N x N covariances —» covariance matrix.
If X is a1 x N random vector (each component is a random variable), then

ZXX = Cov(X, X), such that ZU = Cov(Xj, Xj). (diagonal elements: Var[Xj])




Covariance matrix

Pairwise comparison of N random variables — N x N covariances —» covariance matrix.
If X is a1 x N random vector (each component is a random variable), then

ZXX = Cov(X, X), such that ZU = Cov(Xj, Xj). (diagonal elements: Var[Xj])

Practice:
import numpy as np
np.random.seed(0)
x = np.random.uniform(size = 20)
y = x*%2; z = 1/x
X = np.array([x, y, z])
print(ap.cov(X))
What are the values of Cov(x,y) and Cov(x, z)?
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Covariance matrix

Pairwise comparison of N random variables — N x N covariances —» covariance matrix.
If X is a1 x N random vector (each component is a random variable), then

ZXX = Cov(X, X), such that ZU = Cov(Xj, Xj). (diagonal elements: Var[Xj])

Practice:
import numpy as np
np.random.seed(0)
x = np.random.uniform(size = 20)
y = x*%2; z = 1/x
X = np.array([x, y, z])
print(ap.cov(X))
What are the values of Cov(x,y) and Cov(x, z)?

np.random.seed(0)
x = np.random.uniform(size = 20)
np.random.seed(1)
w = np.random.uniform(size = 20)
print(np.cov(np.array([x, wl)))

What is the value of Cov(x,w)? How does it change if you increase size to 10007




Correlation coefficient

While the sign of Cov(X, Y) is useful, the magnitude isn’t.
Cov is not scale-invariant: Cov(aX,8Y) = af Cov(X,Y).
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Cov is not scale-invariant: Cov(aX,8Y) = af Cov(X,Y).

Pxx = 1 (by definition). “Perfect correlation”.
Pxy = —1 = "perfect anticorrelation”.

Py Probes the strength and direction of a
linear relationship.

Definition ((Pearson's) Correlation
coefficient)

To explore more general monotonic relations,
see rank correlation (e.g., Spearman’s r).
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Correlation coefficient

While the sign of Cov(X, Y) is useful, the magnitude isn’t.
Cov is not scale-invariant: Cov(aX,8Y) = af Cov(X,Y).

— ; . Pxx = 1 (by definition). “Perfect correlation”.

Definition ((Pearson’s) Correlation | e e A

coefficient) Py Probes the strength and direction of a
linear relationship.

To explore more general monotonic relations,
see rank correlation (e.g., Spearman’s r).

Practice:

import numpy as np

np.random.seed(0); x = np.random.uniform(size = 20); y = x**2; z = 1/x
np.random.seed(1); w = np.random.uniform(size = 20)

Sigma = np.cov(np.array([x, y, z, wl))

print(Sigma[0, 1] / np.sqrt(Sigmal[0, 0] * Sigmal1, 11))

print(np.corrcoef(x, y = y) [0, 1])
Repeat for (x,z) and (x, w).

—
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Uncorrelated random variables

Random variables X; (i = 1,2,--- N) are uncorrelated if Cov(Xj, X;) = 6;Var[X;].
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Uncorrelated random variables

Random variables X; (i = 1,2,--- N) are uncorrelated if Cov(Xj, X;) = 6;Var[X;].
Bienaymé’s Identity

The mean of iid variables is drawn from the same distribution, but with 1/Nth the variance.
Xi ~ px(p, 2) = X ~ px(n, 2/N)

Var[X] = Var |: Z Xi Var[X]

N

== ZVar[X] - 12 N Var[X] =

Verify:

import numpy as np
x=np.random.uniform(size=10) . .
print (x.mean()) ; Variance of the mean of the 10 observations: x.var()/10.
print(x.var())

x.var(): variance of the 10 samples (observations) of x.

—
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Uncorrelated random variables

Random variables X; (i = 1,2,--- N) are uncorrelated if Cov(Xj, X;) = 6;Var[X;].

Bienaymé’s Identity

The mean of iid variables is drawn from the same distribution, but with 1/Nth the variance.
Xi ~ px (i, 2) X ~ px(, 2/N)

Var[X] = Var |: Z Xi

Var[X]
N

== ZVar[X] - 12 N Var[X] =

Verify:

import numpy as np
x=np.random.uniform(size=10) .
print (x.mean()) ; Variance of the mean of the 10 observations: x.var()/10.
print(x.var())

x.var(): variance of the 10 samples (observations) of x.

Var[X] | as N t== X — p as N — co (Law of Large Numbers).

L
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Some common probability distributions




Attributes of probability distributions via Python/Scipy

(See documentation for each distribution in scipy.stats)
® rvs - random variates (sample from the distribution)

pmf/pdf - PMF or PDF

logpmf/logpdf - log of the PMF or PDF

cdf - CDF

logcdf - log of the CDF

ppf - percent point function (inverse of cdf; percentiles)

e ® @& @

® @

stats - Mean('m’), variance('v’), skew('s’), kurtosis('k")
(also see mean, median, var, std)

®

expect - Compute expectation value of a function of this random variable

@

interval - Confidence interval

—
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Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question.
Example: outcome of tossing a single (not necessarily fair) coin.

State space: {0, 1}. Probability distribution: (1 — p, p), where p = probability of success.
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Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question
Example: outcome of tossing a single (not necessarily fair) coin.

State space: {0, 1}. Probability distribution: (1 — p, p), where p = probability of success.

Definition (Bernoulli Distribution)

Mean: E[X]=1xP(X=1)+0xP(X=0)=1xp+0x(1—p)=p
Variance: First, E[X?] =12 x P(X =1)+ 0> x P(X=0)=12xp+ 02 x(L—p)=p
= Var[X] = E[X?] — (E[X])? = p — p?= p(L — p)
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Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question.
Example: outcome of tossing a single (not necessarily fair) coin.

State space: {0, 1}. Probability distribution: (1 — p, p), where p = probability of success.

Definition (Bernoulli Distribution)

Mean: E[X]=1xP(X=1)+0xP(X=0)=1xp+0x(1—p)=p
Variance: First, E[X?] =12 x P(X =1)+ 0> x P(X=0)=12xp+ 02 x(L—p)=p
= Var[X] = E[X?] — (E[X])? = p — p?= p(L — p)

from scipy.stats import bernoulli

p = 0.25; mean_th = p; var_th = p * (1-p)

x = bernoulli.rvs(p, size = 10)
print(x.mean()/mean_th); print(x.var()/var_th)
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Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question.
Example: outcome of tossing a single (not necessarily fair) coin.

State space: {0, 1}. Probability distribution: (1 — p, p), where p = probability of success.

Definition (Bernoulli Distribution)

Mean: E[X]=1xP(X=1)+0xP(X=0)=1xp+0x(1—p)=p
Variance: First, E[X?] =12 x P(X =1)+ 0> x P(X=0)=12xp+ 02 x(L—p)=p
= Var[X] = E[X?] — (E[X])? = p — p?= p(L — p)

from scipy.stats import bernoulli

p = 0.25; mean_th = p; var_th = p * (1-p)

x = bernoulli.rvs(p, size = 10)
print(x.mean()/mean_th); print(x.var()/var_th)

Law of Large Numbers: sample mean — E[X] as sample size — oo.

—
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Binomial (discrete, scipy.stats.binom)

Distribution of # successes in n independent experiments (n Bernoulli trials).
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# of “point” masses in a volume fraction V4 /V of space with N points in volume V

%
= Binomial(N, p = Vl) (Meszaros, A. 1997 A&A 328, 1).




Binomial (discrete, scipy.stats.binom)

Distribution of # successes in n independent experiments (n Bernoulli trials).
Examples:

# of heads obtained in n tosses of a fair coin = Binomial(n, p = %)
# of “point” masses in a volume fraction V4 /V of space with N points in volume V

%
= Binomial(N, p = Vl) (Meszaros, A. 1997 A&A 328, 1).

Distribution = probability of k successes (and n — k failures) in n trials:

Binomial(n, k) = (:) p(1 — p)("=) (Binomial distribution)




Binomial (discrete, scipy.stats.binom)

Distribution of # successes in n independent experiments (n Bernoulli trials).
Examples:

# of heads obtained in n tosses of a fair coin = Binomial(n, p = %)
# of “point” masses in a volume fraction V4 /V of space with N points in volume V

%
= Binomial(N, p = Vl) (Meszaros, A. 1997 A&A 328, 1).
Distribution = probability of k successes (and n — k failures) in n trials:
Binomial(n, k) = (:) p(1 — p)("=) (Binomial distribution)
Mean: E[X]= np Variance: Var[X]= np(1 — p)
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Distribution of # successes in n independent experiments (n Bernoulli trials).
Examples:

# of heads obtained in n tosses of a fair coin = Binomial(n, p = %)
# of “point” masses in a volume fraction V4 /V of space with N points in volume V

%
= Binomial(N, p = Vl) (Meszaros, A. 1997 A&A 328, 1).
Distribution = probability of k successes (and n — k failures) in n trials:
Binomial(n, k) = (:) p(1 — p)("=) (Binomial distribution)
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Binomial (discrete, scipy.stats.binom)

Distribution of # successes in n independent experiments (n Bernoulli trials).
Examples:

# of heads obtained in n tosses of a fair coin = Binomial(n, p = %)
# of “point” masses in a volume fraction V4 /V of space with N points in volume V

%
= Binomial(N, p = Vl) (Meszaros, A. 1997 A&A 328, 1).

Distribution = probability of k successes (and n — k failures) in n trials:
Binomial(n, k) = (:) p(1 — p)("=) (Binomial distribution)
Mean: E[X]= np Variance: Var[X]= np(1 — p)
Both are n times the values for Bernoulli(p) as expected (n independent Bernoulli trials).
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Binomial (discrete, scipy.stats.binom)

Distribution of # successes in n independent experiments (n Bernoulli trials).
Examples:
# of heads obtained in n tosses of a fair coin = Binomial(n, p = %)
# of “point” masses in a volume fraction V4 /V of space with N points in volume V

%
= Binomial(N, p = Vl) (Meszaros, A. 1997 A&A 328, 1).

Distribution = probability of k successes (and n — k failures) in n trials:
Binomial(n, k) = (:) p(1 — p)("=) (Binomial distribution)
Mean: E[X]= np Variance: Var[X]= np(1 — p)
Both are n times the values for Bernoulli(p) as expected (n independent Bernoulli trials).

Practice:
If prob. of single success p = 0.25, compute prob. of k = 2 successes in n = 10 trials

from scipy.stats import binom
n, k, p =10, 2, 0.25
print (binom.pmf (k, n, p))

—
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Binomial distribution, contd.

Use the python module P SCipy.stats.binom to answer the following:

1) For n =10, p = 0.3, what is the probability of k = 6 successes?

2) For n =10, p = 0.3, what is the probability of having k > 2 successes?

3) For n =10, p = 0.3, for what k is the probability of < k successes at least 0.75?

PMF of Binomial(n, p) forn = 10, p = 0.3
| —e— binom pmf
—— binom cdf
3rd quartile
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Code for plot available  hera



https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html
http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/binom_dist.py
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