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Review

Variance and covariance.
Uncorrelated random numbers & Bienaymé’s Identity.
Distributions: Bernoulli & Binomial.
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Homework #2: erratum

In Problem 5, the velocities projected along the line of sight should be vrad cosφ, not vrad sinφ.
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Clarification

Three quantities:

Population mean µ – constant.

E[X ] – constant, estimator for µ.

Sample mean X̄ – random variable, also estimator for µ.

Law of Large Numbers: as N →∞, X̄ → E[X ].

Central Limit Theorem: as N →∞, X̄ → µ, if Xi mutually independent.

In general, the three numbers are not equal. We have three deviations to investigate:

1 E[X ]− µ, the bias, constant for a distribution.

2 X − E[X ], a random variable. Convert to constant by computing E[(X − E[X ])2], the
variance.

3 X − µ, another random variable. Convert to constant by computing E[(X − µ)2], the
mean square error (MSE).

We’ll come back to this when discussing the Bias-Variance Tradeoff.
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Poisson (discrete, scipy.stats.poisson)
Probability distribution of the number of events in a fixed interval, such that the events

1 are rare (interval of observation × occurrence rate � 1),

2 are mutually independent, and

3 occur at a constant average rate independent of the location of the interval.

Poisson = Binomial with p � 1 and n� k (# trials � # successes), such that np is finite.
λ ≡ np is the mean number of events per interval.

Examples: the probability that

two supernovae go off in the Milky Way within the next 100 years,

a sample of 137Cs nuclei produces 15 decays in the next minute rare?.

a mag 7.0 earthquake hits Mexico City within the next ten years [independent?],

3 photons from a target will hit a telescope detector within the next second,

One of the earliest applications: the Prussian army’s “death by horse kick” data

Poisson(k, λ) = λk
e−λ

k!
(Can be derived from Binomial PMF by setting λ ≡ np then n→∞).

Number of independent, rare events in a fixed interval: Poisson distribution.

interval between consecutive Poisson events: Exponential distribution.
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Poisson distribution, contd.

E[X ] =
∞∑
k=0

kλk
e−λ

k!
= λe−λ

∞∑
k=0

kλk−1

k!
= λe−λ

∂

∂λ

( ∞∑
k=0

λk

k!

)
= λe−λ

∂

∂λ
eλ = λ(= np)

Similarly, Var(X ) = λ Compare with Binomial(n, p): Var(X ) = np(1− p), with p � 1.

=⇒ Measurement of N Poisson events: standard deviation (an “uncertainty”) of
√
N.

Illustration: A telescope receives an average of S photons s−1 from a source of interest. The
average background contribution is B photons s−1. What signal-to-noise ratio is obtained from
a 10-second observation?

Source and background photons satisfy conditions for Poisson statistics –
in both cases, the emission of each photon is independent of the emission of other photons.

Expected value of the source counts: λS = 10× S ; background counts: λB = 10× B.

The corresponding variances: 10× S and 10× B.

Variance on total photons observed in 10 s:

10× (S + B) (source and background are uncorrelated).

=⇒ signal-to-noise of a 10-s observation is
√

10
S

√
S + B

.

Due to Poisson statistics, increasing the exposure time by a factor f increases the S/N by
√
f .
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Uniform (continuous, scipy.stats.uniform)

Const. prob. per unit interval ⇒ pX (X ) =
1

b − a
I{a≤X≤b}(X ) (normalisation requires finite interval!)

X ∼ Uniform(a, b);X = a + (b − a)Y , where Y ∼ Uniform(0, 1) standard uniform distribution.

PDF (top) and CDF (bottom).
Credit:user:IkamusumeFan/CC BY-SA

3.0

How do you generate Uniform(4, 10)? Use the loc and scale

keywords (see documentation).

E[X ] =
a + b

2
= median = mode (symmetric distribution).

Var(X ) =
1

12
(a + b)2

CDF: FX (X ) =
X − a

b − a

Multiple samples from scipy.stats.uniform are uncorrelated:
from scipy.stats import uniform

x = uniform.rvs(size = [2, 1000]) # 2 random vectors

print(np.corrcoef(x)[0, 1]) # should be small
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Exponential (continuous, scipy.stats.expon)

Number of independent, rare events in a fixed interval: Poisson distribution.

Interval between consecutive Poisson events: Exponential distribution.

Examples:
Time between consecutive decays of a radionuclide.
Time until next bus arrives.

PDF: pX (X ) ≡ Exponential[λ] = λe−λX .

Waiting Time Paradox see here.
The Exponential distribution is memoryless: P(T > t + s|P > s) = P(T > t).

No memory of already having waited for time s.

At any time, probability that next event will occur after time t = λe−λt .

Mean interval between successive Poisson events = inverse of the mean rate of occurrence:

E[X ] =
1

λ

Variance: Var(X ) =
1

λ2
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Normal (continuous, scipy.stats.normal)

Standard normal distribution

PDF: ϕ(X ) =
1
√

2π
exp

[
−

X 2

2

]
(mean: 0, variance: 1).

CDF : Φ(X ) =
1
√

2π

X∫
−∞

exp
[
−

t2

2

]
dt =

1

2

[
1 + erf

( X
√

2

)]
,

where erf(X ) is the error function: erf(X ) =
2
√
π

X∫
0

exp
[
− t2

]
dt.
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Central Limit Theorem

Let Xi (i = 1, 2, · · · , n) ∼ pX (µ, σ2) with mean µ and variance σ2 known.

Sample mean of these n draws: Sn =
n∑

i=1
Xi/n. From Bienaymé’s Identity, σ(Sn) =

σ
√
n

.

Standardise: define the random variable Zn =
Sn − µ
σ/
√
n

The Central Limit Theorem can be stated in terms of the CDF of Z :

lim
n→∞

P

(
Sn − µ
σ/
√
n
≤ z

)
= lim

n→∞
P(Z ≤ z) = Φ(z).

For any PDF with finite variance, the sample mean of n random deviates is

approximately normally distributed about the mean of the PDF, with variance 1/
√
n times the

variance of the PDF.

One reason the Normal distribution pops up everywhere.
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Xi/n. From Bienaymé’s Identity, σ(Sn) =

σ
√
n

.

Standardise: define the random variable Zn =
Sn − µ
σ/
√
n

The Central Limit Theorem can be stated in terms of the CDF of Z :

lim
n→∞

P

(
Sn − µ
σ/
√
n
≤ z

)
= lim

n→∞
P(Z ≤ z) = Φ(z).

For any PDF with finite variance, the sample mean of n random deviates is

approximately normally distributed about the mean of the PDF, with variance 1/
√
n times the

variance of the PDF.

One reason the Normal distribution pops up everywhere.

Statistics for Astronomers: Lecture 4, 2020.09.30

Prof. Sundar Srinivasan - IRyA/UNAM 10



Central Limit Theorem

Let Xi (i = 1, 2, · · · , n) ∼ pX (µ, σ2) with mean µ and variance σ2 known.

Sample mean of these n draws: Sn =
n∑

i=1
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Aside: Maximising information entropy

The Shannon information entropy for continuous distributions, H = −
∫

dx pX (X ) log pX (X ),

is the average level of information provided by a PDF.

For a given set of constraints, the PDF that maximises the entropy is the one that provides the
least information about the system.

The distribution that maximises H subject to the normalisation constraint is the Uniform
distribution (derivation).

If, in addition, we know the mean, the Exponential distribution is the maximum-entropy
distribution.

If, in addition, we also know the variance, the maximum-entropy distribution is the Normal
distribution.

For more information, read this article.
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Functions of random variables

Statistics for Astronomers: Lecture 4, 2020.09.30

Prof. Sundar Srinivasan - IRyA/UNAM 12



Probability Integral Transform

CDF of a random variable X : FX (X ) ≡ P(X ≤ X ). Range: [0, 1] (like Standard Uniform).

Monotonically ↑ =⇒ unique inverse (Quantile Function): F−1
X (q) = X such that FX (X ) = q.

Range of FX (X ): [0, 1], like the Standard Uniform distribution.

CDF of the Standard Uniform distribution: Y ∼ Uniform[0, 1] =⇒ FY (y) = y .

Probability Integral Transform:
If Y = FX (X ) for some continuous random variable X, then Y ∼ Uniform[0, 1].
Proof:
FY (y) ≡ P(Y ≤ y) = P(FX (X ) ≤ y)

= P(X ≤ F−1
X (y)) ≡ FX (F−1

X (y)) = y (the CDF for Uniform[0, 1]!)

Example: Draw random variates from the distribution pX (X ) =
2

π

1

x2 + 1
, 0 ≤ x <∞

Step 1: Compute the CDF: FX (X ) ≡ P(X ≤ X ) =

X∫
0

2

π

1

t2 + 1
dt = tan−1 X .

Step 2: Define Y = FX (X ) = tan−1 X (=⇒ X = tanY ) =⇒ Y ∼ Uniform[0, 1].

Step 3: Draw samples y from Uniform[0, 1] and then compute x = tan y .

This procedure guarantees that the resulting x will be distributed according to pX (X ).
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PDFs of functions of random variables

A function of a random variable will, in general, not have the same distribution.

In simple cases, it is possible to analytically determine the PDF of the function.

This lecture: 3 analytical methods for determining the PDFs of functions of random variables.

For more complicated functions, or when we don’t even know the functional dependence
analytically, we have to resort to numerical methods.

One common example where such sampling is required is in Monte Carlo methods, especially
when computing and sampling the posterior probability distributions in Bayesian analysis.

These methods allow us to compute distributions for complicated functions by sampling simple
distributions such Uniform[0, 1].

Examples of analytical cases to which such analysis is applicable:

1D general case: If X ∼ pX (X ) and Y = f (X ), what is pY (y)?

2D independent case: If X ∼ pX (X ), Y ∼ pY (y) and Z = f (X ,Y ), what is pZ (z)?

2D general case: If X ,Y ∼ pX ,Y (x , y) and Z = f (X ,Y ), what is pZ (z)?

2D linear combination: If X ,Y ∼ pX ,Y (x , y) and Z = αX + βY , what is pZ (z)?

(and higher dimension equivalents).
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PDFs of functions: CDF method

Aim: Given X ∼ pX (X ) and Y = f (X ), find pY (y).

Step 1: Using allowed range for X , find allowed range of Y .

Step 2: Find CDF of Y over this range.

Step 3: If CDF is continuous, differentiate w.r.t. y to obtain PDF of Y over the range.

Example: If X ∼ Uniform[−1, 1] and Y = X 2, find pY (y).

Note that the inverse of f (X ) in this case is multi-valued: y = x2 =⇒ x = ±√y .

CDF of X : FX (X ) =
X − (−1)

1− (−1)
=

x + 1

2
, X ∈ [−1, 1].

Step 1: If x ∈ [−1, 1], y = x2 ∈ [0, 1].

Step 2: CDF of Y : FY (y) ≡ P(Y ≤ y) = P(−√y ≤ X ≤ √y)

= P(−1 ≤ X ≤ √y)− P(−1 ≤ X ≤ −√y) = FX (
√
y)− FX (−√y) =

√
y + 1

2
−

1−√y
2

=
√
y , for 0 ≤ y ≤ 1.

Step 3: Since the CDF is continuous, pY (y) =
d

dy
FY (y) =

d

dy

√
y =

1

2
√
y

.
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PDFs of functions: Transformation (Inverse) method

Aim: Given X ∼ pX (X ) and Y = f (X ), find pY (y).

This method works if inverse can be written down explicitly. (not the case with, e.g., y = XeX )

Y = f (X ) =⇒ X = f −1(Y ). Write X in terms of y everywhere.

(X , X + dX ) −→ (y , y + dy), such that pX (X ) dX = pY (y) dy =⇒ pY (y) =
pX (f −1(y))∣∣∣dy

dx

∣∣∣ .

If inverse multi-valued, add contributions to pY (y): pY (y) =
∑
xi

pX (xi )∣∣∣dy
dx

∣∣∣ ∀ xi : f (xi ) = y

Example: X ∼ N (0, 1) =
1
√

2π
e−X 2/2,Y = X 2

X ∈ (−∞,∞) =⇒ y ∈ (0,∞) (0 should be included, but see PDF below!).

Invert: x = ±√y – multivalued but symmetric (equal contribution to PDF from each root).

Write x in terms of y everywhere: pX (X ) = pX (f −1(y)) =
1
√

2π
e−y/2,

∣∣∣dy
dx

∣∣∣ = 2
√
y .

Apply multi-valued version of the transformation method. Factor of 2 in derivative cancels.

=⇒ pY (y) =
1
√

2π

e−y/2

y
, which is the χ2 distribution for 1 degree of freedom.
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PDFs of linear combinations: convolution

If Z = αX + βY for α, β ∈ R, pZ (z) can be written as a convolution of pX (X ) and pY (y).

(proof: see, e.g., Slides 13-15 here.)

pZ (z) =

∞∫
−∞

dx pX (X ) pY

(
z − αX

β

)
(where y is written in terms of X and z)

Example: sum of two uniform deviates

X ,Y ∼ U[0, 1] and Z = X + Y =⇒ Y = Z − X .

X and y go from 0 to 1, so z goes from 0 to 2. Split this interval into [0, 1] and [1, 2].

For z ∈ (0, 1), we need z − X ≥ 0, so X < z:

z∫
0

dX pX (X ) pY ((z − X )) =

z∫
0

dX = z.

For z ∈ (1, 2), we need z − X ≤ 1, so X > z − 1:

1∫
z−1

dX pX (X ) pY ((z − X )) =

1∫
z−1

dX = 2− z.

=⇒ pZ (z) =

{
z : 0 < z ≤ 1
2− z : 1 < z ≤ 2

Can be extended to a linear combination of N
random variables!
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If Z = αX + βY for α, β ∈ R, pZ (z) can be written as a convolution of pX (X ) and pY (y).

(proof: see, e.g., Slides 13-15 here.)

pZ (z) =

∞∫
−∞

dx pX (X ) pY

(
z − αX

β

)
(where y is written in terms of X and z)

Example: sum of two uniform deviates

X ,Y ∼ U[0, 1] and Z = X + Y =⇒ Y = Z − X .

X and y go from 0 to 1, so z goes from 0 to 2. Split this interval into [0, 1] and [1, 2].

For z ∈ (0, 1), we need z − X ≥ 0, so X < z:

z∫
0

dX pX (X ) pY ((z − X )) =

z∫
0

dX = z.

For z ∈ (1, 2), we need z − X ≤ 1, so X > z − 1:

1∫
z−1

dX pX (X ) pY ((z − X )) =

1∫
z−1

dX = 2− z.

=⇒ pZ (z) =

{
z : 0 < z ≤ 1
2− z : 1 < z ≤ 2

Can be extended to a linear combination of N
random variables!

Statistics for Astronomers: Lecture 4, 2020.09.30

Prof. Sundar Srinivasan - IRyA/UNAM 17

https://www.cis.rit.edu/class/simg713/Lectures/Lecture713-04.pdf

