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Review

Frequentist statistical inference:
Parametric (specify model, compute likelihood) vs.
nonparametric (performed on rank-ordered data).

Estimation (point/interval) or hypothesis testing.
Bayesian vs frequentist inference.

Statistics and their desired properties.
Estimators, estimates. Bias-variance tradeoff.
Point estimates: likelihood.

—
TRvA






Maximum Likelihood Estimation (MLE)

A method of point estimation.

“[T]he most probable set of values for the [model parameters] will make [the likelihood] a
maximum.”

“The likelihood that [the parameters| should have [an assigned set of values] is proportional to
the probability that if this were so, the totality of observation should be that observed.”

— R. A. Fisher, quoted in Feigelsen & Babu
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Procedure: For a vector of parameters 5, write down the functional form of the likelihood. Find
the value of 8 at which this likelihood is maximum.




Maximum Likelihood Estimation (MLE)

A method of point estimation.

“[T]he most probable set of values for the [model parameters] will make [the likelihood] a
maximum.”

“The likelihood that [the parameters] should have [an assigned set of values] is proportional to
the probability that if this were so, the totality of observation should be that observed.”

— R. A. Fisher, quoted in Feigelsen & Babu

Procedure: For a vector of parameters 5, write down the functional form of the likelihood. Find
the value of 8 at which this likelihood is maximum.

1D example: N = 10 coin tosses result in X = 8 heads. Estimate P(H).

1
Z(G):P(X:S,N:10|0):(8O) 63 (1—0)2 with0 <0 <1.
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Maximum Likelihood Estimation (MLE)

A method of point estimation.

“[T]he most probable set of values for the [model parameters] will make [the likelihood] a
maximum.”

“The likelihood that [the parameters] should have [an assigned set of values] is proportional to
the probability that if this were so, the totality of observation should be that observed.”

— R. A. Fisher, quoted in Feigelsen & Babu

Procedure: For a vector of parameters 5, write down the functional form of the likelihood. Find
the value of 8 at which this likelihood is maximum.

1D example: N = 10 coin tosses result in X = 8 heads. Estimate P(H).
10
L(0)=P(X=8N=10]0) = (8) 63 (1—0)2 with0 <0 <1.

Use log-likelihood for convenience: £(0) = In.£(0) = constant +8In6 + 2In (1 — ).
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the probability that if this were so, the totality of observation should be that observed.”

— R. A. Fisher, quoted in Feigelsen & Babu
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the value of 8 at which this likelihood is maximum.
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vanishes at 0 = GAMLE — Oyup = 0.8.



MLE for iid Gaussian random variables
6 = (u,02). N observations Xi(i =1, , N) ~ A (1, 52).
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6 = (u,02). N observations Xi(i =1, , N) ~ A (1, 52).
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MLE for iid Gaussian random variables
6 = (u,02). N observations Xi(i =1, , N) ~ A (1, 52).

W 1/2 _ 2 N/2 N _ 2
=Il(zm) = [-3(55) | - (=) = [-332(+%) ]

1 i=1
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MLE of p is the sample mean!



MLE for iid Gaussian random variables
6 = (u,02). N observations Xi(i =1, , N) ~ A (1, 52).
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MLE for iid Gaussian random variables
6 = (u,02). N observations Xi(i =1, , N) ~ A (1, 52).

W 1/2 _ 2 N/2 N _ 2
“o=[l(zm) = [-3(5*) | :<sz2) =[-:22 ()]

1 i=1

N
or Xi— i o 1 (x — u)2
a,u,_z< o2 > o 0( N+Z )
N
. X —f i (Xl /‘)2
@ MLE: E < = )-0 @ MLE: —N + E =0

= {=InZL(u, 2)—constant——lna - = E <

=il @ i=1
1 = 1 1
:>ﬁ:NZx,-E)?. =>02=NZ(X,7,1)2:NZ(X,-7;)2
i=1 i=1 i=1
MLE of p is the sample mean! MLE of o2 is the (biased) sample variance!
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What is the uncertainty on the MLE?

Coin-toss problem: assume that the true 6 is 8p = 0.8, unknown to observer.
Each round of ten tosses: different value of Ayus (e.g., [0.9,0.7,0.9,0.8,1.,0.9,1.,0.9,0.9,0.8]).
With finite # experiments, not enough to just quote GAMLE. What is the variance on the MLE?



http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/binomial_like.py

What is the uncertainty on the MLE?

Coin-toss problem: assume that the true 6 is 8p = 0.8, unknown to observer.
Each round of ten tosses: different value of Ayus (e.g., [0.9,0.7,0.9,0.8,1.,0.9,1.,0.9,0.9,0.8]).
With finite # experiments, not enough to just quote OAMLE. What is the variance on the MLE?

Expand In_.Z around 6p:

20)] (o (6 — 6p)?
n [z(eo)} - <692 '”f(“’)>902! i

In.Z “regular” if we can ignore higher-order terms.
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What is the uncertainty on the MLE?

Coin-toss problem: assume that the true 6 is 6y = 0.8, unknown to observer.
Each round of ten tosses: different value of Qg (e.g.. [0.9,0.7,0.9,0.8,1.,0.9,1.,0.9,0.9,0.8]).
With finite # experiments, not enough to just quote 6’AMLE. What is the variance on the MLE?

Expand In_.Z around 6p:

Z0) | 9?2 (6 — 69)?
n [z(m} - (692 '”5(9)>902; i

In.Z “regular” if we can ignore higher-order terms.

In.Z quadratic = .¥ Gaussian. Usually assumed.

Can describe In .Z with location 0y and curvature of In.Z at 0q.

Code for plot available 3 herg-
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What is the uncertainty on the MLE?

Coin-toss problem: assume that the true 6 is 6y = 0.8, unknown to observer.
Each round of ten tosses: different value of Qg (e.g.. [0.9,0.7,0.9,0.8,1.,0.9,1.,0.9,0.9,0.8]).
With finite # experiments, not enough to just quote 6’AMLE. What is the variance on the MLE?

Expand In_.Z around 6p:
2 —0.)2
Z(0) 19} In.2(0) (6 — 6o) n
Z(6o) 062 . 2!
o
In.Z “regular” if we can ignore higher-order terms.

In.Z quadratic = .¥ Gaussian. Usually assumed.

Can describe In .Z with location 0y and curvature of In.Z at 0q.

Code for plot available 3 herg-

Curvature defined as the negative second derivative of In_Z at location of maximum:

16) = —ilogf(l D) MOE 8?9 a?a

(N-D)  Fisher information matrix.

Large curvature near g: less uncertainty (more information) about location of maximum.
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What is the uncertainty on the MLE? (contd.)

Fisher matrix

——~

N-D Taylor Expansion: In 3(_6.) = L 0—8,)| — iilnﬂ(@) (6 —6y)T
Z(60) 060 06 a
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What is the uncertainty on the MLE? (contd.)

Fisher matrix

i Z£(6) .o ) 2 o
N-D Taylor Expansion: In = =——(60 -6 - ——=InZ(0 0 — 6
y p {Z(Go)] 2( 0)[ Foh ( )} ( o)

0o

The observer produces estimates for the Fisher matrix (random variable!) with every experiment.

Observed Fisher information: Fisher matrix evaluated at é‘\MLE.




What is the uncertainty on the MLE? (contd.)

Fisher matrix

N-D Taylor Expansion: In 3(?) = —1(6_‘— &) | — iiln 20)| (6—6)T
Z(60) 2 060 06 80

The observer produces estimates for the Fisher matrix (random variable!) with every experiment.

Observed Fisher information: Fisher matrix evaluated at é‘\MLE.

To compare with the true value, define:

Average/Expected Fisher information: Z(8) = E[/(6)] = E [ = %% Iog.,?,”:| .
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What is the uncertainty on the MLE? (contd.)

Fisher matrix

N-D Taylor Expansion: In 3(_6.) = —1(6_‘— &) | — iiln 20)| (6—6)T
Z(60) 2 060 06 80

The observer produces estimates for the Fisher matrix (random variable!) with every experiment.

Observed Fisher information: Fisher matrix evaluated at é‘\MLE.

To compare with the true value, define:

Average/Expected Fisher information: Z(8) = E[/(6)] = E [ = %% Iog.,?,”:| .

The MLE is distributed around its expected value (= true value if MLE is unbiased) with a
spread described by the Fisher matrix.
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What is the uncertainty on the MLE? (contd.)

Fisher matrix

6) 1
N-D Taylor Expansion: In |:$( ) ]

_ Y gyl 929, 5 A
20| 2 HO)[ 9600 ;y(e)Lso )

The observer produces estimates for the Fisher matrix (random variable!) with every experiment.

Observed Fisher information: Fisher matrix evaluated at é‘\MLE.
To compare with the true value, define:

Average/Expected Fisher information: Z(8) = E[/(6)] = E [ = %% Iog.,?,”:| .

The MLE is distributed around its expected value (= true value if MLE is unbiased) with a
spread described by the Fisher matrix.

The inverse of the Expected Fisher matrix is the covariance matrix of the parameters:

-

Y(6) = 27(6)
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Fisher information for the ten coin-toss problem

Experiment: Ten coin tosses with unknown probability € of obtaining a head.

2(0) « 6X(1 — 0)(N=X) and E[X] = N6.
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Fisher information for the ten coin-toss problem

Experiment: Ten coin tosses with unknown probability € of obtaining a head.

2(0) « 6X(1 — 0)(N=X) and E[X] = N6.

The Fisher Information is
A N
Z(O)=E| —

(9) 520

0
— Iog$:| = m
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Fisher information for the ten coin-toss problem

Experiment: Ten coin tosses with unknown probability € of obtaining a head.

£(0) o< 6% (1 — 0)(N=X), and E[X] = N6.

The Fisher Information is
2 N

0
Z(0) _]E|:— Iog.i”:| = a0

Information highest near # = 0 and 6 = 1.

Fisher information as a function of #

Code for plot available p here-
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Fisher information for the ten coin-toss problem

Experiment: Ten coin tosses with unknown probability € of obtaining a head.

£(0) o< 6% (1 — 0)(N=X), and E[X] = N6.

Fisher information as a function of #

The Fisher Information is

&2 N
Z(0) = ]E|:— — Iog.i”:| = a0

Information highest near # = 0 and 6 = 1.
Variance of Binomial(N,6) = N 6 (1 — 0).

1
= —— in this case!
(0)

Code for plot available p here-
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Fisher information for the ten coin-toss problem

Experiment: Ten coin tosses with unknown probability € of obtaining a head.

£(0) o< 6% (1 — 0)(N=X), and E[X] = N6.

Fisher information as a function of #

The Fisher Information is

&2 N
Z(0) = ]E|:— — Iog.i”:| = a0

Information highest near # = 0 and 6 = 1.
Variance of Binomial(N,6) = N 6 (1 — 0).

1
= —— in this case!
(0)

Is this always true? Cramér-Rao Lower Bound.

Code for plot available p here-
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Variance of unbiased estimators: Cramér-Rao Lower Bound

-

If T(X) is an unbiased estimator of a function g(6) of the parameters 6 (i.e., E[T(X)] = g(9)),
and Z(6) is the expected Fisher information matrix, then




Variance of unbiased estimators: Cramér-Rao Lower Bound

-

If T(X) is an unbiased estimator of a function g(6) of the parameters 6 (i.e., E[T(X)] = g(9)),
and Z(6) is the expected Fisher information matrix, then

o L\ T
Var[T(X)] > (82(;)>I_1(§) <8ga(;)> Cramér-Rao Lower Bound (CRLB)




Variance of unbiased estimators: Cramér-Rao Lower Bound

If T(X) is an unbiased estimator of a function g(6) of the parameters 6 (i.e., E[T(X)] = g(9)),
and Z(6) is the expected Fisher information matrix, then

o L\ T
Var[T(X)] > (82(;)>I_1(§) <8(g9(;)> Cramér-Rao Lower Bound (CRLB)

-,

In particular, if we set g(6) = 6, so that T(X) is an unbiased estimator for 8,

Var[T(X)] > Z7%(6)

The inverse of the Fisher Information (= covariance) of a parameter is a lower bound on the
variance of any unbiased estimator of that parameter.
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Variance of unbiased estimators: Cramér-Rao Lower Bound

If T(X) is an unbiased estimator of a function g(6) of the parameters 6 (i.e., E[T(X)] = g(9)),
and Z(6) is the expected Fisher information matrix, then

o L\ T
Var[T(X)] > (6‘?;))1_1(5) <8(g9(;)> Cramér-Rao Lower Bound (CRLB)

-

In particular, if we set g(6) = 6, so that T(X) is an unbiased estimator for 8,

Var[T(X)] > Z7%(6)

The inverse of the Fisher Information (= covariance) of a parameter is a lower bound on the
variance of any unbiased estimator of that parameter.

Does not tell us if the estimator T(X) exists, or how we can find it.

We can compute the variance for various 11(X) and choose the one with variance closest to the
CRLB.
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Variance of unbiased estimators: Cramér-Rao Lower Bound

If T(X) is an unbiased estimator of a function g(6) of the parameters 6 (i.e., E[T(X)] = g(9)),
and Z(6) is the expected Fisher information matrix, then

o L\ T
Var[T(X)] > (6‘?;))1_1(5) <8(g9(;)> Cramér-Rao Lower Bound (CRLB)

-

In particular, if we set g(6) = 6, so that T(X) is an unbiased estimator for 8,

Var[T(X)] > Z7%(6)

The inverse of the Fisher Information (= covariance) of a parameter is a lower bound on the
variance of any unbiased estimator of that parameter.

Does not tell us if the estimator T(X) exists, or how we can find it.

We can compute the variance for various 11(X) and choose the one with variance closest to the
CRLB.

- =,

For biased estimators: If E[T(X) — 6] = B(6) # 0, set g(6) = B(6) + 6 and apply CRLB.

—
A



Covariance matrix for MLE of Gaussian random variables

Recall:
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Covariance matrix for MLE of Gaussian random variables

Recall:

N
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Covariance matrix for MLE of Gaussian random variables

Recall:

N
%_Z X — W ot
o o2 90

i=1

Howryo s

o

Compute all three second derivatives:

0% N 8% N 2
A ﬁ—z‘*z()ﬂ 2

Compute expectation values:

2 2
I P R 2 R WY
Ou? o2 Oo?

02 o2 o2

")

N
E[Z(x,- — u)z] =N o2
i=1
8%
80’8/]; 3 Z(Xl M)

2
IE[ oL :| = 0 (uncorrelated!)
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Covariance matrix for MLE of Gaussian random variables

Recall:

N
25 (55) E-i(-we ) s{Seen)-ne

i=1

Compute all three second derivatives:

2 N 2 N 3 8%

g __ oc_N_ S )2
o2 o2 802~ o2 of (% — ) 808u >3 Z(X: ©)

Compute expectation values:
2 2
g| 24| __N g| 2%
Ou? o2 Oo?

Expected Fisher matrix: Z(6) = —E

= 0 (uncorrelated!)

2
N 3 2N E[ae}

T2 g2 T a2 Oadu

D9 hgl=L|N O
06 66 o?

0 2N
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Covariance matrix for MLE of Gaussian random variables

Recall:

N
25 (55) E-i(-we ) s{Seen)-ne

i=1

Compute all three second derivatives:

020 N 20 N 3 E ) 820
72 o 92 = 2 A LITH Dot 32(% Q)
Compute expectation values:
020 N 8% N 3 2N 8%
El—=|=-= El—=|==-5N=-—=% E = 0 (uncorrelated!)
o o do o o o Oodu
0 0 1 (N 0
E ted Fish t I(0) = -E| —=—InZ| =
xpected Fisher matrix: Z(6) = PG n :| —~lo 2n

Covariance matrix: 3(0) = Z-1(0) = —
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Covariance matrix for MLE of Gaussian random variables

Recall:

N
%:Z Xi—p or 1 NJFZ(XI
ou o2 90 o

i=1
Compute all three second derivatives:

2 N 8% N )
A @—z‘*z()ﬂ 2

Compute expectation values:

g| &L __N g| PN _3, 2N
2| o2 Oo? 02 o2 o2
Expected Fisher matrix: Z(6) = —E ii InZ 12
06 66 o
2
. . N1 _ 9 |1 0
Covariance matrix: 2(0) =Z71(0) = willo 2]

8%
80’3/1 -3 Z(X: )
2
E oL = 0 (uncorrelated!)
Oodu
N 0
0 2N

Variances = CRBL!
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Computational MLE

Log-likelihood is fed to routine by user.
Routine optimises this function using a variety of techniques.
The output will include the MLE as well as the covariance matrix.

Example: fitting a line to data with uncertainties.
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Point estimation: caveats (Feigelsen & Babu, ch. 3)

“It is worth checking any piece of remembered statistics, as it is almost certain to be based on
the Gaussian distribution.”

— Wall & Jenkins, Sec. 3.2
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Point estimation requires two decisions:




Point estimation: caveats (Feigelsen & Babu, ch. 3)

“It is worth checking any piece of remembered statistics, as it is almost certain to be based on
the Gaussian distribution.”
— Wall & Jenkins, Sec. 3.2

Point estimation requires two decisions:
® Model specification: required to compute the likelihood. How do we know it is correct?
Model validation (goodness-of-fit).
Model selection.
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Point estimation: caveats (Feigelsen & Babu, ch. 3)

“It is worth checking any piece of remembered statistics, as it is almost certain to be based on
the Gaussian distribution.”
— Wall & Jenkins, Sec. 3.2

Point estimation requires two decisions:
® Model specification: required to compute the likelihood. How do we know it is correct?
Model validation (goodness-of-fit).
Model selection.

@) Estimation method: which estimator do we pick?
The MLE is not always unbiased.

Minimum Variance Unbiased Estimator (MVUE) — among unbiased estimators,
pick the one with the least variance.
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