

Statistics for Astronomers: Lecture 7, 2020.10.19

Prof. Sundar Srinivasan

IRyA/UNAM

Review

Maximum likelihood estimation.

The variance of the MLE: Fisher information, covariance matrix.

Variance of unbiased estimators: The Cramér-Rao Lower Bound.

The minimum variance unbiased estimator (MVUE).

References

- "Dos and don'ts of reduced chi-squared". Andrae, Schulze-Hartung, & Melchior.
- "Error estimation in astronomy: A guide". Andrae.

Rthese assumptions can be relaxed

 \vec{y} : a measurement of \vec{Y} .

 $\vec{\sigma}$: independent/uncorrelated, ^R (in general) heteroskedastic measurement uncertainties in \vec{y} .

 \vec{Y} : a random vector dependent on a non-random^R vector \vec{X} .

Rthese assumptions can be relaxed

 \vec{Y} : a random vector dependent on a non-random \vec{R} vector \vec{X} .

 \vec{y} : a measurement of \vec{Y} .

 $\vec{\sigma}$: independent/uncorrelated, \vec{R} (in general) heteroskedastic measurement uncertainties in \vec{y} .

Central assumption: Gaussian random errors. $y_{\text{mod}}(x_i; \vec{\theta}) = y_i + \sigma_i \ \epsilon_i$, with $\epsilon_i \sim \mathcal{N}(0, 1)$.

Any difference between our model and the data is purely due to Gaussian random noise.

Rthese assumptions can be relaxed

 \vec{Y} : a random vector dependent on a non-random^R vector \vec{X} .

 \vec{y} : a measurement of \vec{Y} .

 $\vec{\sigma}$: independent/uncorrelated, ^R (in general) heteroskedastic measurement uncertainties in \vec{y} .

Central assumption: Gaussian random errors. $y_{\text{mod}}(x_i; \vec{\theta}) = y_i + \sigma_i \epsilon_i$, with $\epsilon_i \sim \mathcal{N}(0, 1)$.

Any difference between our model and the data is purely due to Gaussian random noise.

Combined likelihood for the Gaussian random errors: $\mathscr{L} = \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma_i}} \mathrm{e}^{-\epsilon_i^2/2}$.

Rthese assumptions can be relaxed

 \vec{Y} : a random vector dependent on a non-random^R vector \vec{X} . \vec{v} : a measurement of \vec{Y} .

 $\vec{\sigma}$: independent/uncorrelated, R (in general) heteroskedastic measurement uncertainties in \vec{y} .

Central assumption: Gaussian random errors. $y_{\text{mod}}(x_i; \vec{\theta}) = y_i + \sigma_i \ \epsilon_i, \text{ with } \epsilon_i \sim \mathcal{N}(0, 1).$

Any difference between our model and the data is purely due to Gaussian random noise.

Combined likelihood for the Gaussian random errors: $\mathscr{L} = \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma_i}} \mathrm{e}^{-\epsilon_i^2/2}$.

$$\ln \mathcal{L} = \operatorname{constant} - \frac{1}{2} \sum_{i=1}^{N} \ln \sigma_i - \frac{1}{2} \chi^2, \text{ where } \chi^2 \equiv \sum_{i=1}^{N} \epsilon_i^2 = \sum_{i=1}^{N} \left(\underbrace{\frac{y_i - y_{\text{mod}}(x_i; \vec{\theta})}{\sigma_i}} \right)^2$$

these assumptions can be relaxed

 \vec{Y} : a random vector dependent on a non-random^R vector \vec{X} .

 \vec{v} : a measurement of \vec{Y} .

 $\vec{\sigma}$: independent/uncorrelated, R (in general) heteroskedastic measurement uncertainties in \vec{y} .

Central assumption: Gaussian random errors. $y_{\text{mod}}(x_i; \vec{\theta}) = y_i + \sigma_i \epsilon_i$, with $\epsilon_i \sim \mathcal{N}(0, 1)$.

Any difference between our model and the data is purely due to Gaussian random noise.

Combined likelihood for the Gaussian random errors: $\mathscr{L} = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma_i}} e^{-\epsilon_i^2/2}$.

$$\ln \mathcal{L} = \text{constant} - \frac{1}{2} \sum_{i=1}^{N} \ln \sigma_i - \frac{1}{2} \chi^2, \text{ where } \chi^2 \equiv \sum_{i=1}^{N} \epsilon_i^2 = \sum_{i=1}^{N} \left(\underbrace{\frac{y_i - y_{\text{mod}}(x_i; \vec{\theta})}{\sigma_i}} \right)^2$$

 χ^2 (sometimes a.k.a. "log-likelihood") is a sum of squares of Standard Normal residues.

Has a $\chi^2(\nu = N)$ distribution ($\nu = \text{dof}$). \mathcal{L} is max when χ^2 is min – " χ^2 minimisation".

Rthese assumptions can be relaxed

 \vec{Y} : a random vector dependent on a non-random^R vector \vec{X} . \vec{y} : a measurement of \vec{Y} .

 $\vec{\sigma}$: independent/uncorrelated, R (in general) heteroskedastic measurement uncertainties in \vec{y} .

Central assumption: Gaussian random errors. $y_{\text{mod}}(x_i; \vec{\theta}) = y_i + \sigma_i \ \epsilon_i, \text{ with } \epsilon_i \sim \mathcal{N}(0, 1).$

Any difference between our model and the data is purely due to Gaussian random noise.

Combined likelihood for the Gaussian random errors: $\mathscr{L} = \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma_i}} \mathrm{e}^{-\epsilon_i^2/2}$.

$$\ln \mathcal{L} = \text{constant} - \frac{1}{2} \sum_{i=1}^{N} \ln \sigma_i - \frac{1}{2} \chi^2, \text{ where } \chi^2 \equiv \sum_{i=1}^{N} \epsilon_i^2 = \sum_{i=1}^{N} \left(\underbrace{\frac{y_i - y_{\text{mod}}(x_i; \vec{\theta})}{\sigma_i}} \right)^2$$

 χ^2 (sometimes a.k.a. "log-likelihood") is a sum of squares of Standard Normal residues. Has a $\chi^2(\nu=N)$ distribution ($\nu=$ dof). $\mathscr L$ is max when χ^2 is min – " χ^2 minimisation".

 χ^2 is the MLE only if the errors are Gaussian! Check this with your data! e.g., compute residues and verify that they are normally distributed (see Sec 4.1 stere).

Statistics for Astronomers: Lecture 7, 2020.10.1

If
$$Z \sim \mathcal{N}(0,1)$$
 and $W = Z^2$,
$$p_W(w) = p_X(\sqrt{w}) \; \frac{dz}{dw} = 2 \frac{1}{\sqrt{2\pi}} e^{-\frac{w}{2}} \frac{1}{2\sqrt{w}}$$
$$= \frac{w^{-1/2}}{\Gamma\left(\frac{1}{2}\right)} e^{-\frac{w}{2}} \; (w > 0) \equiv \chi^2(\nu = 1).$$

Recall:
$$\mathbb{E}[Z^2] = \mu^2 + \sigma^2 = 1$$
.

 χ^2 distribution for 1 dof. Mean: 1, variance: 2.

If
$$Z \sim \mathcal{N}(0,1)$$
 and $W = Z^2$,

$$p_{w}(w) = p_{x}(\sqrt{w}) \frac{dz}{dw} = 2\frac{1}{\sqrt{2\pi}}e^{-\frac{w}{2}}\frac{1}{2\sqrt{w}}$$

= $\frac{w^{-1/2}}{\Gamma(\frac{1}{2})}e^{-\frac{w}{2}} (w > 0) \equiv \chi^{2}(\nu = 1).$

Recall:
$$\mathbb{E}[Z^2] = \mu^2 + \sigma^2 = 1$$
.

 χ^2 distribution for 1 dof. Mean: 1, variance: 2.

Same mean, but steeper distribution near 0 and wider tails.

If
$$Z \sim \mathcal{N}(0,1)$$
 and $W = Z^2$,
$$p_W(w) = p_X(\sqrt{w}) \, \frac{dz}{dw} = 2 \frac{1}{\sqrt{2\pi}} e^{-\frac{w}{2}} \frac{1}{2\sqrt{w}}$$
$$= \frac{w^{-1/2}}{\Gamma(\frac{1}{2})} e^{-\frac{w}{2}} \, (w > 0) \equiv \chi^2(\nu = 1).$$

Recall:
$$\mathbb{E}[Z^2] = \mu^2 + \sigma^2 = 1$$
.

 χ^2 distribution for 1 dof. Mean: 1, variance: 2.

If
$$Z_i \sim \mathcal{N}(0,1)$$
 and $W = \sum_{i=1}^N Z_i^2$,

$$p_{w}(w) = \frac{w^{\frac{N}{2}-1}}{\Gamma(\frac{N}{2})}e^{-\frac{w}{2}} \ (w>0) \equiv \chi^{2}(\nu=N).$$

$$\equiv \chi^2(\nu = N).$$

Recall:
$$\mathbb{E}[\sum Z_i^k] = \sum \mathbb{E}[Z_i^k]$$
.

 χ^2 distribution for N dof. Mean: N, variance: 2N.

If
$$Z \sim \mathcal{N}(0,1)$$
 and $W = Z^2$,

$$p_w(w) = p_X(\sqrt{w}) \frac{dz}{dw} = 2 \frac{1}{\sqrt{2\pi}} e^{-\frac{w}{2}} \frac{1}{2\sqrt{w}}$$

$$= \frac{w^{-1/2}}{\Gamma(\frac{1}{2})} e^{-\frac{w}{2}} (w > 0) \equiv \chi^2(\nu = 1).$$

Recall:
$$\mathbb{E}[Z^2] = \mu^2 + \sigma^2 = 1$$
.

 χ^2 distribution for 1 dof. Mean: 1, variance: 2.

If
$$Z_i \sim \mathcal{N}(0,1)$$
 and $W = \sum_{i=1}^N Z_i^2$,

$$p_{W}(w) = \frac{w^{\frac{N}{2}-1}}{\Gamma(\frac{N}{2})} e^{-\frac{w}{2}} (w > 0) \equiv \chi^{2}(\nu = N).$$
$$\equiv \chi^{2}(\nu = N).$$

Recall: $\mathbb{E}[\sum Z_i^k] = \sum \mathbb{E}[Z_i^k]$.

 χ^2 distribution for N dof. Mean: N, variance: 2N.

Since x > 0, asymmetric! $\chi^2(\nu = N) \to \mathcal{N}(N, 2N)$ as $N \to \infty$. But takes a while! Needs large N.

Example of inference from χ^2 minimisation

Assume a linear model:
$$y_{\text{mod}}(x_i; \vec{\theta}) = m \ x_i + b$$
, so that $\chi^2 = \sum_{i=1}^N \left(\frac{y_i - m \ x_i - b}{\sigma_i} \right)^2$.

Compute derivatives wrt m and b and set to zero to solve for the parameters:

$$\frac{\partial \chi^2}{\partial \mathbf{b}} = -2 \sum_{i=1}^{N} \frac{y_i - m \, x_i - \mathbf{b}}{\sigma_i^2}; \qquad \frac{\partial \chi^2}{\partial m} = -2 \sum_{i=1}^{N} x_i \left(\frac{y_i - m \, x_i - \mathbf{b}}{\sigma_i^2} \right)$$

$$\widehat{m} \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} + \widehat{b} \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} = \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} \qquad \widehat{m} \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} + \widehat{b} \sum_{i=1}^{N} \frac{1}{\sigma_i^2} = \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2}$$

$$\vec{\theta} = A^{-1}B; \qquad \theta = (m, b)^{\mathrm{T}} \qquad B \equiv \left(\sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2}, \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2}\right)^{\mathrm{T}} \qquad A \equiv \begin{bmatrix} \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} & \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \\ \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} & \sum_{i=1}^{N} \frac{1}{\sigma_i^2} \end{bmatrix}$$

A can be inverted numerically to solve for the parameters $\vec{\theta}$. Parameter uncertainties from covariance matrix.

 χ^2 minimisation produces ML estimates (and thus constraints) for p parameters.

#dof
$$\nu = N - p$$
. $\mathbb{E}[\chi^2(\nu)] = \nu$; $\operatorname{Var}[\chi^2(\nu)] = 2\nu$. Relative error: $\sqrt{\frac{2}{\nu}} \approx 14\%$ even for $N = 100$.

 $\chi^2(\nu) > \nu$: underfitting; errors underestimated. $\chi^2(\nu) < \nu$: overfitting; errors overestimated.

 χ^2 minimisation produces ML estimates (and thus constraints) for p parameters.

#dof
$$\nu = N - p$$
. $\mathbb{E}[\chi^2(\nu)] = \nu$; $\operatorname{Var}[\chi^2(\nu)] = 2\nu$. Relative error: $\sqrt{\frac{2}{\nu}} \approx 14\%$ even for $N = 100$.

$$\chi^2(\nu) > \nu$$
: underfitting; errors underestimated. $\chi^2(\nu) < \nu$: overfitting; errors overestimated.

The reduced χ^2

$$\chi^2_{
m red} \equiv rac{\chi^2(
u)}{
u} = \chi^2 \ {
m per} \ {
m dof}.$$

 χ^2 minimisation produces ML estimates (and thus constraints) for p parameters.

#dof
$$\nu = N - p$$
. $\mathbb{E}[\chi^2(\nu)] = \nu$; $\operatorname{Var}[\chi^2(\nu)] = 2\nu$. Relative error: $\sqrt{\frac{2}{\nu}} \approx 14\%$ even for $N = 100$.

$$\chi^2(
u) >
u$$
: underfitting; errors underestimated. $\chi^2(
u) <
u$: overfitting; errors overestimated.

The reduced χ^2

$$\chi^2_{\rm red} \equiv \frac{\chi^2(\nu)}{\nu} = \chi^2$$
 per dof.

Shape like
$$\chi^2(\nu)$$
, $\mathbb{E}[W] = 1$, $Var[W] = \frac{2}{\nu}$.

 ν -dependent shape; highly asymmetric for $\nu \lesssim 30$.

 χ^2 minimisation produces ML estimates (and thus constraints) for p parameters.

#dof
$$\nu = N - p$$
. $\mathbb{E}[\chi^2(\nu)] = \nu$; $\operatorname{Var}[\chi^2(\nu)] = 2\nu$. Relative error: $\sqrt{\frac{2}{\nu}} \approx 14\%$ even for $N = 100$.

 $\chi^2(\nu) > \nu$: underfitting; errors underestimated. $\chi^2(\nu) < \nu$: overfitting; errors overestimated.

The reduced χ^2

$$\chi^2_{\rm red} \equiv \frac{\chi^2(\nu)}{\nu} = \chi^2 \text{ per dof.}$$

Shape like
$$\chi^2(\nu)$$
, $\mathbb{E}[W] = 1$, $\operatorname{Var}[W] = \frac{2}{\nu}$.

Frequently misunderstood and abused by astronomers! Typical practice: $\chi^2_{\rm red} \approx 1$: good fit.

If smaller (larger), recalibrate uncertainties.

 ν -dependent shape; highly asymmetric for $\nu \lesssim 30$.

(ロ) (間) (目) (目) (同) (の)

 χ^2 minimisation produces ML estimates (and thus constraints) for p parameters.

#dof
$$\nu = N - p$$
. $\mathbb{E}[\chi^2(\nu)] = \nu$; $\operatorname{Var}[\chi^2(\nu)] = 2\nu$. Relative error: $\sqrt{\frac{2}{\nu}} \approx 14\%$ even for $N = 100$.

 $\chi^2(\nu) > \nu$: underfitting; errors underestimated. $\chi^2(\nu) < \nu$: overfitting; errors overestimated.

The reduced χ^2

$$\chi^2_{\rm red} \equiv \frac{\chi^2(\nu)}{\nu} = \chi^2 \text{ per dof.}$$

Shape like
$$\chi^2(\nu)$$
, $\mathbb{E}[W] = 1$, $Var[W] = \frac{2}{\nu}$.

Frequently misunderstood and abused by astronomers! Typical practice: $\chi^2_{\rm red} \approx 1$: good fit.

If smaller (larger), recalibrate uncertainties.

Problem: huge relative uncertainty (\sim 100%) even for a perfect model!

#dof not easy to define in many situations!

See Dos and dont's for reduced χ^2 for more.

 ν -dependent shape; highly asymmetric for $\nu \lesssim 30$.

4日 > 4日 > 4目 > 4目 > 4目 > 900

The normal and Student's t distributions

The multivariate normal distribution

An N-dimensional generalisation of the normal distribution. Rewrite the pdf for the 1-D case:

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right] = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2}(x-\mu)\left(\frac{1}{\operatorname{Var}[X]}\right)(x-\mu)\right].$$
$$= \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)\left(\frac{1}{\operatorname{Cov}(X,X)}\right)(x-\mu)\right].$$

The N-D case can be summarised using the (column) vector \vec{X} and the covariance matrix Σ .

$$\vec{\boldsymbol{X}}=(X_1,X_2,\cdots,X_n)$$
, such that $(\vec{\boldsymbol{X}})_i=X_i$.

$$\Sigma = \mathit{Cov}(\vec{\pmb{X}}, \vec{\pmb{X}})$$
, such that $(\Sigma)_{ij} = \mathit{Cov}(X_i, X_j) = E[(X_i - E[X_i])(X_j - E[X_j])]$.

$$\Sigma = E[(\vec{X} - E[\vec{X}])(\vec{X} - E[\vec{X}])^{\mathrm{T}}]$$
 (the transpose generates a matrix of the proper shape).

The multivariate normal distribution is, therefore,

$$ho_{ec{\mathbf{X}}}(ec{\mathbf{X}}) = rac{1}{\left((2\pi)^{N}\mathrm{Det}(\mathbf{\Sigma})
ight)^{1/2}}\exp\left[-rac{1}{2}(ec{\mathbf{X}}-ec{oldsymbol{\mu}})\mathbf{\Sigma}^{-1}(ec{\mathbf{X}}-ec{oldsymbol{\mu}})^{\mathrm{T}}
ight]$$
 , with $ec{\mu}\equiv E[ec{\mathbf{X}}]$.

The covariance matrix has the effect of "mixing" terms together.

Bivariate normal: N=2 case of multivariate normal

Recall: $Cov(X, Y) = \rho \sigma_X \sigma_Y$, with correlation coefficient ρ and σ_i the standard deviation of X_i .

$$\boldsymbol{\Sigma} = \begin{bmatrix} \textit{Cov}(X,X) & \textit{Cov}(X,Y) \\ \textit{Cov}(Y,X) & \textit{Cov}(Y,Y) \end{bmatrix} = \begin{bmatrix} \sigma_X^2 & \rho\sigma_X\sigma_Y \\ \rho\sigma_Y\sigma_X & \sigma_Y^2 \end{bmatrix} \Longrightarrow \mathrm{Det}(\boldsymbol{\Sigma}) = (1-\rho^2)\sigma_X^2\sigma_Y^2$$

$$\underbrace{p_{\vec{x}}(\vec{x})}_{P(X \cap Y)} = \frac{1/(2\pi)}{\sqrt{\sigma_X \sigma_Y (1-\rho^2)}} \exp \left[-\frac{1}{2(1-\rho^2)} \left(\underbrace{\left(\frac{x-\mu_X}{\sigma_X}\right)^2}_{P(X)} + \underbrace{\left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 - 2\rho \left(\frac{x-\mu_X}{\sigma_X}\right) \left(\frac{y-\mu_Y}{\sigma_Y}\right)}_{P(Y|X)} \right) \right]$$

In general, $\rho \neq 0$, so $P(Y|X) \neq P(Y)$.

Uncorrelated
$$X_i$$
: $\Sigma = \text{Diag}(\sigma_1^2, \dots, \sigma_N^2); \quad \text{Det}(\Sigma) = \prod_{i=1}^N \sigma_i^2.$

Multivariate version visualised as the joint distribution $P(X_1, X_2, \cdots, X_N) =$ $P(X_1) \cdot P(X_2|X_1) \cdot P(X_3|X_2, X_1) \cdot \cdot \cdot P(X_N|X_1, X_2, \dots, X_{N-1})$

Contours showing linear correlation between σ_X and σ_Y : \longrightarrow Non-linear correlation would result in "banana-shaped"

contours.

Hess diagram of a bivariate normal (AstroML, Chapter 3.)

Why do I need the multivarblahblahlah?

Example: χ^2 fits to spectral energy distributions (SEDs) and spectra.

SEDs consist of observations in broadband photometric filters. There is sometimes quite an overlap between adjacent filters, which means the corresponding fluxes/uncertainties in those bands are correlated.

Spectra are even worse – very narrow wavelength range for each point, and adjacent points are almost certainly correlated.

A more general model of spectra/SEDs would account for these effects with non-diagonal covariance matrices, for example.

However, this can only describe <u>linear</u> correlations (not "banana-shaped" contours).

Attempt to turn a suspected Gaussian random variable into a location- and scale-free variable: Subtract the location parameter/statistic and divide by the scale parameter/statistic.

Attempt to turn a suspected Gaussian random variable into a location- and scale-free variable: Subtract the location parameter/statistic and divide by the scale parameter/statistic.

$$\mu,\sigma \text{ known: } Z \equiv \frac{X-\mu}{\sigma} \Longrightarrow Z \sim \mathcal{N}(0,1). \ \mu \text{ unknown: } Z \equiv \frac{X-\overline{X}}{\sigma} \Longrightarrow Z \sim \mathcal{N}(0,1+1/N).$$

$$\sigma \text{ unknown: } T \equiv \frac{X-\mu}{s} - \text{Student's } t \text{ distribution ("studentisation", not "standardisation")}.$$

Attempt to turn a suspected Gaussian random variable into a location- and scale-free variable: Subtract the location parameter/statistic and divide by the scale parameter/statistic.

$$\mu, \sigma$$
 known: $Z \equiv \frac{X - \mu}{\sigma} \Longrightarrow Z \sim \mathcal{N}(0, 1)$. μ unknown: $Z \equiv \frac{X - \overline{X}}{\sigma} \Longrightarrow Z \sim \mathcal{N}(0, 1 + 1/N)$. σ unknown: $T \equiv \frac{X - \mu}{\sigma}$ – Student's t distribution ("studentisation", not "standardisation").

P(|Z| < a) – probability enclosed within some distance of the centre of the distribution. P(|Z| > a), P(Z < -a), P(Z > a) - probability of encountering extreme values (one/two-tailed).

Attempt to turn a suspected Gaussian random variable into a location- and scale-free variable: Subtract the location parameter/statistic and divide by the scale parameter/statistic.

$$\mu, \sigma$$
 known: $Z \equiv \frac{X - \mu}{\sigma} \Longrightarrow Z \sim \mathcal{N}(0, 1)$. μ unknown: $Z \equiv \frac{X - X}{\sigma} \Longrightarrow Z \sim \mathcal{N}(0, 1 + 1/N)$. σ unknown: $T \equiv \frac{X - \mu}{\sigma}$ – Student's t distribution ("studentisation", not "standardisation").

P(|Z| < a) – probability enclosed within some distance of the centre of the distribution.

 $P(|Z|>a), P(Z<-a), \overline{P(Z>a)}$ – probability of encountering extreme values (one/two-tailed).

Central probability:
$$P(|Z| \le a) = \Phi(a) - \Phi(-a) = \operatorname{erf}\left(\frac{a}{\sqrt{2}}\right)$$
.

One-tailed extreme: $P(Z \le -a) = \Phi(-a)$, CDF of $\mathcal{N}(0,1)$.

Two-tailed extreme: $|Z| > a \Longrightarrow (Z < -a) \text{ or } (Z > a)$.

$$P(|Z| > a) = 1 - P(|Z| < a) = 1 - \text{erf}\left(\frac{a}{\sqrt{2}}\right).$$

Where erf is the error function:

erf
$$(x) \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x\sqrt{2}} dt \ e^{-t^2/2} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} dt \ e^{-t^2}.$$

Practice

Use scipy.special.erfinv or methods from scipy.stats.norm to find

- 1. Central probability: a such that P(|Z| < a) = 0.5
- 2. One-tailed extreme: a such that P(Z < -a) = 0.1
- 3. Two-tailed extreme: a such that P(|Z| > a) = 0.995