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Review

Maximum likelihood estimation.

The variance of the MLE: Fisher information, covariance matrix.
Variance of unbiased estimators: The Cramér-Rao Lower Bound.
The minimum variance unbiased estimator (MVUE).




The x? distribution
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Y: a random vector de_pendent on a non-random’ vector X.
y: a measurement of Y.
&: independent/uncorrelated,” (in general) heteroskedastic measurement uncertainties in y.

Central assumption: Gaussian random errors. y,0q(%;; 5) =y + o €, with ¢, ~ 4(0,1).

Any difference between our model and the data is purely due to Gaussian random noise.

Combined likelihood for the Gaussian random errors: 12/2.
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X% (sometimes a.k.a. “log-likelihood") is a sum of squares of Standard Normal residues.

Has a x?(v = N) distribution (v = dof). . is max when 2 is min — “x? minimisation”.

X2 is the MLE only if the errors are Gaussian! Check this with your datal

e.g., compute residues and verify that they are normally distributed (see Sec 4.1 ghera).
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The x? distribution
If Z~ #(0,1) and W = Z2,

dz 1 1
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pw(w) = px( )dw \/ﬂe 2w
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=2 7 (w>0)= xz(u =1).
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Recall: E[Z?] = p? + 02 = 1.

x?2 distribution for 1 dof. Mean: 1, variance: 2.




The 2 distribution

If Z~ #(0,1) and W = Z2,

dz 1 w 1
w) = VW) — =2——e" 2
pw(w) = px( ) dw \/27|-e 2w

w—1/2

= —e 3 (w>0)=x3(v=1)

1
()
Recall: E[Z?] = p? + 02 = 1.

X2 distribution for 1 dof. Mean: 1, variance: 2.

Comparison of \*(1) with .4 (0, 1

Code for plot available p herd.

Same mean, but steeper distribution near 0
and wider tails.
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If Zj ~.#(0,1) and W = > Z7,
i=1

‘W%_1 w
pu() = "% (w>0) = (v = N).
(%)
=x%(v = N).

Recall: E[>° ZF] = Y- E[Z].
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The 2 distribution

If Z~ #(0,1) and W = Z2,
dz 1 w 1

pw(w) = px(vV/w) G 2\/?673 N
w—1/2

= 7167% (w>0)=x3(v=1).
()
Recall: E[Z?] = p? + 02 = 1.

X2 distribution for 1 dof. Mean: 1, variance: 2.

Code for plot available p herd.

N
If Zj ~.#(0,1) and W = > Z7,
i=1

w%_l w
pw(w) = 76_5 (w>0)=x%(v = N).
r(j) Since x > 0, asymmetric!
=2(v = N). X2(v = N) = A (N,2N) as N — co.
ile!
Recall: E[S Zik] _ Z]E[Z,'k]- But takes a while! Needs large N.

X2 distribution for N dof. Mean: N, variance: 2N.
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Example of inference from x? minimisation

iy 2
~ E : i—mx;i—b
Assume a linear model: yy04(Xi; @) = m x; + b, so that x? = <y,,>
g

i=1
Compute derivatives wrt m and b and set to zero to solve for the parameters:
N N
x> }:y,-—mx,-—b x> }: yi—mux —b
—_—==2 —_— —_— ==2 Xi| ———————
ab o? Om o7
i=1 i=1

N N N
X X,y, = Xj o~ 1 Yi
me+ Z - DIEED IR
0',2 0'2 0'2
i=1 ! i=1 ! i=1

N
J_ A-1R. _ T _ x,y, y, _ | i=1 i=1
6=A"1B;, 0=(mbT B= E E A= | N

A can be inverted numerically to solve for the parameters 6.
Parameter uncertainties from covariance matrix.
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Interpretation of x? and reduced x? values

X2 minimisation produces ML estimates (and thus constraints) for p parameters.
p)

#dof v = N — p. E[x2(v)] = v; Var[x?(v)] = 2v. Relative error: /= =2 14% even for N = 100.
v

x2(v) > v: underfitting; errors underestimated. x2(v) < v: overfitting; errors overestimated.
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Shape like x%(v), E[W] =1, Var[W] =

Code for plot available § herg-

v-dependent shape; highly asymmetric for v < 30.
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fed =X ) = x2 per dof.

v
Shape like x%(v), E[W] =1, Var[W] = g
v

Frequently misunderstood and abused by astronomers!
Typical practice: Xfcd =~ 1: good fit.

Code for plot available § herg-

If smaller (larger), recalibrate uncertainties.

v-dependent shape; highly asymmetric for v < 30.
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Interpretation of x? and reduced x? values

X2 minimisation produces ML estimates (and thus constraints) for p parameters.
2

#dof v = N — p. E[x?(v)] = v; Var[x?(v)] = 2v. Relative error: /= ~ 14% even for N = 100.
14

x2(v) > v: underfitting; errors underestimated. x2(v) < v: overfitting; errors overestimated.

The reduced 2
2
fed =X ) = x2 per dof.

v
Shape like x%(v), E[W] =1, Var[W] = g
v

Frequently misunderstood and abused by astronomers!
Typical practice: Xfcd =~ 1: good fit.

Code for plot available § herg-

If smaller (larger), recalibrate uncertainties.

Problem: huge relative uncertainty (~100%) even for a
perfect model!

##dof not easy to define in many situations!
See [, Dos and dont's for reduced X2] for more. v-dependent shape; highly asymmetric for v < 30.
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The multivariate normal distribution

An N-dimensional generalisation of the normal distribution. Rewrite the pdf for the 1-D case:

Px(X)=\/2ir7exp[—;(X;“)2]=\/%exp[—;(X—u)(\,arl[x])(x—u)]-

1 1 1
- (2ma2)1/2 P |:_ 2(X_#)<COV(X,X)>(X_M):|.

The N-D case can be summarised using the (column) vector X and the covariance matrix 3.
X = (X1, Xz, , Xp), such that (X), = X;.

> = Cov(X, X), such that (2); = Cov(X;, X)) = E[(X; — E[Xi])(X; — E[X]])]-
X = E[()? — E[X])(X — E[X])T] (the transpose generates a matrix of the proper shape).

The multivariate normal distribution is, therefore,
. 1 1. i/ - N o
pg(R) = —————— s e [ SE-METE- u)T} | with 7 = E[X].
((2m)¥Det(x))

The covariance matrix has the effect of “mixing” terms together.

—
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Bivariate normal: N = 2 case of multivariate normal

Recall: Cov(X,Y) = poxoy , with correlation coefficient p and o; the standard deviation of X;.

Cov(X,X) Cov(X,Y)] [ o2 pPOXTy _ 2
x= Cov(Y,X) Cov(Y,Y)|  |poyox a2 = Wil = ({0 = pFjeries

B 1/(2m) 1 X = [X\2 (Y — Hy\2 X = px\ (Y — By
P = e |~ gt ( (520 (1) - () () )|
P(XMY) =

P(X) P(Y|X)

In general, p # 0, so P(Y|X) # P(Y).

N
Uncorrelated X;: ¥ = Diag(c%, -+ ,0%); Det(Z) = Ha,-z.
Multivariate version visualised as the joint distribution

P(Xy, Xp, -+, Xy) =

P(Xy) - P(Xp|X1) - P(X3|X2, X1) - - - P(Xn X1, X2, -+, Xn—1)

Contours showing linear correlation between ox and oy: —

Non-linear correlation would result in “banana-shaped”

contours.
Hess diagram of a bivariate normal
(AstroML, Chapter 3.)




Why do | need the multivarblahblahblah?

Example: x? fits to spectral energy distributions (SEDs) and spectra.

SEDs consist of observations in broadband photometric filters. There is sometimes quite an
overlap between adjacent filters, which means the corresponding fluxes/uncertainties in those
bands are correlated.

Spectra are even worse — very narrow wavelength range for each point, and adjacent points are
almost certainly correlated.

A more general model of spectra/SEDs would account for these effects with non-diagonal
covariance matrices, for example.
However, this can only describe linear correlations (not “banana-shaped” contours).



Z-Score

Attempt to turn a suspected Gaussian random variable into a location- and scale-free variable:
Subtract the location parameter/statistic and divide by the scale parameter/statistic.
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Z-Score

Attempt to turn a suspected Gaussian random variable into a location- and scale-free variable:
Subtract the location parameter/statistic and divide by the scale parameter/statistic.

X - X-X
@, 0 known: Z = " = Z ~ A4(0,1). punknown: Z= —— = Z ~ A(0,1+ 1/N).
o o

X —
o unknown: T = Lo

— Student’s t distribution (“studentisation”, not “standardisation”).
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Z-Score

Attempt to turn a suspected Gaussian random variable into a location- and scale-free variable:

Subtract the location parameter/statistic and divide by the scale parameter/statistic.

X - X-X
" = Z ~ #(0,1). p unknown: Z =

(o2 (o2

—p

w, 0 known: Z =

= Z ~ (0,14 1/N).

o unknown: T =

— Student’s t distribution (“studentisation”, not “standardisation”).

P(]Z| < a) — probability enclosed within some distance of the centre of the distribution.

P(|Z]| > a), P(Z < —a), P(Z > a) — probability of encountering extreme values (one/two-tailed).

®(a) and Erf(a) for a =0.75

Code for plot available p herd.
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Z-Score

Attempt to turn a suspected Gaussian random variable into a location- and scale-free variable:
Subtract the location parameter/statistic and divide by the scale parameter/statistic.
X — X—-X
L 2 A(0,1). p unknown: Z =
g g

—p

i, o known: Z = = Z ~ A4(0,14+1/N).

o unknown: T =

— Student’s t distribution (“studentisation”, not “standardisation”).

P(]Z| < a) — probability enclosed within some distance of the centre of the distribution.
P(|Z]| > a), P(Z < —a), P(Z > a) — probability of encountering extreme values (one/two-tailed).

®(a) and Erf(a) for a =0.75

Central probability: P(|Z] < a) = ®(a) — ®(—a) = erf (%)

One-tailed extreme: P(Z < —a) = ®(—a), CDF of .#/(0,1).
Two-tailed extreme: |Z| > a = (Z < —a) or (Z > a).

P(1Z| >a)=1—-P(|Z| < a) = 1—erf (%)

Where erf is the error function:
X\/§ X

1 2 1 2
erf (x) = — / dte_t/2:—/dte_t.
27 VT

—xV2 —X

Code for plot available p herd.
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Practice

Use scipy.special.erfinv or methods from scipy.stats.norm to find
1. Central probability: a such that P(|Z| < a) = 0.5

2. One-tailed extreme: a such that P(Z < —a) = 0.1

3. Two-tailed extreme: a such that P(|Z| > a) = 0.995
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