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Review

The x? distribution.

x? minimisation and interpretation. Reduced x? and caution.
The Empirical Rule for normal distributions.
The z-score.




The Empirical Rule for normal distributions

Probability of obtaining values within 1, 2, or 3 o of the centre of a normal distribution.

Central probability Extreme (right tail) probability

P(1Z] < 1)~ 068  P(Z>1)= [1 —P(12] < 1)} ~0.16
P(1Z] <2) ~0.95  P(Z > 2) ~ 0.025.

P(|Z| < 3) = 0.997 P(Z > 3) =~ 0.0015.

Therefore also known as the 68-95-99.7 Rule.

30 rule of thumb for normal distributions:
most (99.7%) of your data is within 3o of the mean.

Code for plot available p herd.



http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/norm_123sigma.py
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most (99.7%) of your data is within 3o of the mean.

Code for plot available p herd.

Detecting new particle: min 50. P(Z > 5) =~ 5.7 x 1077
Highly unlikely that event due to random chance.

Other way around: for significance level 1 — «,
what is the threshold z, ; such that P(|Z] > z,,2) < a? (Two-tailed test)
what is the threshold z, /, such that P(Z > z,,5) < a? (One-tailed test)

p4
P(1Z| > za) =1 — P(1Z] < 2aj2) = 1 —erf (“7/22) = 20y = V2erf 1 (1-a).
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Code for plot available p herd.

Detecting new particle: min 50. P(Z > 5) =~ 5.7 x 1077
Highly unlikely that event due to random chance.

Other way around: for significance level 1 — «,
what is the threshold z, ; such that P(|Z] > z,,2) < a? (Two-tailed test)
what is the threshold z, /, such that P(Z > z,,5) < a? (One-tailed test)
z
P(1Z| > za) =1 — P(1Z] < 2aj2) = 1 —erf (“7/22) = 20y = V2erf 1 (1-a).
Hypothesis testing. 1 — a usually 95%. Observed probability: p-value.

Example: pixel with flux 30 above noise level. p-value: P(Z > 3) = 0.00135 < o = 0.05.
— the detection is statistically significant at the a = 95% level.

—
"



http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/norm_123sigma.py

Student’s t-distribution

X—p

If X ~ A (u,02) with g unknown, we use X and o to estimate p: Z =

~ H(0,1).
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Student’s t-distribution

X—p

If X ~ A (u,0?) with & unknown, we use X and o to estimate u: Z = ~ A(0,1).

What if o is also unknown? We can estimate it from data. Recall: = S such that

N N
1 1
S2 = N E (i — ) (1 known) S? = T E (x; —%)*> (1 unknown)
i=1 i=1
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Student’s t-distribution

_ X —
If X ~ 4 (u,0?) with 1 unknown, we use X and o to estimate pu: Z = =

+1).

What if o is also unknown? We can estimate it from data. Recall: & = S such that

N
1
== E —u)?  (u known) P = T E (xi =%)?  (w unknown)
i=1

X —
=S &

has a Student’s t-distribution with #dof = N — 1 (if & estimated by X).

Student t-distribution for 1 — [2, 4, 10]

t2\ —(v+1)/2
) with v = #dof = Nor N — 1.

pr(t,v) o (1 + =

Code for plot available p here-
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Symmetric about t = 0, odd moments = 0 (like the Gaussian).
Uncertain estimate S for o = more probability in the tails.

pr(t,v) 22225 4(0,1) Var[T] = 1/ Lo,
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What if o is also unknown? We can estimate it from data. Recall: & = S such that
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) with v = #dof = Nor N — 1.
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Symmetric about t = 0, odd moments = 0 (like the Gaussian).
Uncertain estimate S for o = more probability in the tails.

pr(t,v) 22225 4(0,1) Var[T] = 1/ Lo,

Use the t-distribution for N < 30.

Code for plot available p here-
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The t statistic

For small samples (N < 30), we must compute the t-equivalent of the z statistic in order to
determine t-scores.

X—p

X —
For a Normal random variable X, T = 5 For any (CLT) sample mean: T = e

S/VN
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For v = 4, using scipy.stats.t.cdf and scipy.stats.norm.cdf,
compare the central concentration of T with Z:
P(|To=4] < 1)~ 0.63; P(|Z| <1)~0.68
P(|To=4] < 2) =~ 0.88; P(|Z| <2)=~0.95
P(|T,=4| < 3)~0.96; P(|Z] < 3)=0.997
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P(|To=4] < 2) =~ 0.88; P(|Z| <2)=~0.95
P(|T,=4| < 3)~0.96; P(|Z] < 3)=0.997
Central behaviour quite similar!

For v = 4, using scipy.stats.t.ppf and scipy.stats.norm.ppf,
compare probability in the tails for various significance levels; that is,
PUTocal > tyeaaps) < avs. P(Z] > zo)0) < a
a=0.1 : f,/:47a/2 ~ 2.13; Zoj2 N 1.64 using t.ppf(1—a/2), norm.ppf(l—a/2)
a=0.05 :t,_4q/2"278; z,/2 ~ 1.96
a=0.003: t,_4 /2~ 6.44; 2./, ~2.97
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For small samples (N < 30), we must compute the t-equivalent of the z statistic in order to
determine t-scores.
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For a Normal random variable X, T = 27 H For any (CLT) sample mean: T = e
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For v = 4, using scipy.stats.t.cdf and scipy.stats.norm.cdf,
compare the central concentration of T with Z:
P(|To=4] < 1)~ 0.63; P(|Z| <1)~0.68
P(|To=4] < 2) =~ 0.88; P(|Z| <2)=~0.95
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Central behaviour quite similar!

For v = 4, using scipy.stats.t.ppf and scipy.stats.norm.ppf,
compare probability in the tails for various significance levels; that is,
PUTocal > tyeaaps) < avs. P(Z] > zo)0) < a
a=0.1 : f,/:47a/2 ~ 2.13; Zoj2 N 1.64 using t.ppf(1—a/2), norm.ppf(l—a/2)
a=0.05 :t,_4q/2"278; z,/2 ~ 1.96
a=0.003: t,_4 /2~ 6.44; 2./, ~2.97

Very different because of behaviour in the tails (“fatter” or “heavier’-tailed distribution)!
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More general rule(s) for non-Normal distributions?

If location and scale parameters known:

Definition (Chebyshev's Inequality)

Two-tailed version, can be modified for asymmetric distributions.
Ex: P(|Z| > 2) <0.25; P(|Z| > 3) < 0.11; compare to Empirical Rule for Normal distributions.




More general rule(s) for non-Normal distributions?

If location and scale parameters known:

Definition (Chebyshev's Inequality)

Two-tailed version, can be modified for asymmetric distributions.
Ex: P(|Z] > 2) <0.25; P(|Z| > 3) < 0.11; compare to Empirical Rule for Normal distributions.

If u, o unknown:

Definition (Markov's Inequality)

Two-tailed version also exists.
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Example: an experiment to determine the mass of a rock results in a measurement of
(0.2+0.05) kg, where 0.05 kg is the 1o uncertainty in the measured mass. For Gaussian
uncertainties, this means that 68.3% of the measured masses will lie in the range [0.15,0.25] kg.

Note that an interval estimate requires an estimate of the variance of the distribution of
observed values. We will look at various ways of estimating this variance as well.
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