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Review

The χ2 distribution.

χ2 minimisation and interpretation. Reduced χ2 and caution.

The Empirical Rule for normal distributions.

The z-score.
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The Empirical Rule for normal distributions

Probability of obtaining values within 1, 2, or 3 σ of the centre of a normal distribution.

Central probability Extreme (right-tail) probability

P(|Z | ≤ 1) ≈ 0.68 P(Z > 1) = 1
2

[
1− P(|Z | ≤ 1)

]
≈ 0.16

P(|Z | ≤ 2) ≈ 0.95 P(Z > 2) ≈ 0.025.

P(|Z | ≤ 3) ≈ 0.997 P(Z > 3) ≈ 0.0015.

Therefore also known as the 68–95–99.7 Rule.

3σ rule of thumb for normal distributions:
most (99.7%) of your data is within 3σ of the mean.

Detecting new particle: min 5σ. P(Z > 5) ≈ 5.7× 10−7

Highly unlikely that event due to random chance.
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Other way around: for significance level 1− α,

what is the threshold zα/2 such that P(|Z | > zα/2) < α? (Two-tailed test)

what is the threshold zα/2 such that P(Z > zα/2) < α? (One-tailed test)

P(|Z | > zα/2) = 1− P(|Z | ≤ zα/2) = 1− erf
( zα/2√

2

)
=⇒ zα/2 =

√
2 erf−1

(
1− α

)
.

Hypothesis testing. 1− α usually 95%. Observed probability: p-value.

Example: pixel with flux 3σ above noise level. p-value: P(Z > 3) = 0.00135 < α = 0.05.
=⇒ the detection is statistically significant at the α = 95% level.
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Student’s t-distribution

If X ∼ N (µ, σ2) with µ unknown, we use X and σ to estimate µ: Z =
X − µ
σ

∼ N (0, 1).

What if σ is also unknown? We can estimate it from data. Recall: σ
∧

= S such that

S2 =
1

N

N∑
i=1

(Xi − µ)2 (µ known) S2 =
1

N − 1

N∑
i=1

(Xi − X )2 (µ unknown)

T ≡
X − µ

S
has a Student’s t-distribution with #dof = N − 1 (if µ estimated by X ).

pT (t, ν) ∝
(

1 +
t2

ν

)−(ν+1)/2
with ν = #dof = N or N − 1.

Symmetric about t = 0, odd moments = 0 (like the Gaussian).
Uncertain estimate S for σ ⇒ more probability in the tails.

pT (t, ν)
N→∞−−−−→ N (0, 1) Var[T ] =

√
ν

ν − 2

ν→∞−−−−→ 1.

Use the t-distribution for N < 30.
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The t statistic

For small samples (N < 30), we must compute the t-equivalent of the z statistic in order to
determine t-scores.

For a Normal random variable X , T =
X − µ

S
. For any (CLT) sample mean: T =

X − µ
S/
√
N

For ν = 4, using scipy.stats.t.cdf and scipy.stats.norm.cdf,
compare the central concentration of T with Z :

P(|Tν=4| < 1) ≈ 0.63; P(|Z | < 1) ≈ 0.68
P(|Tν=4| < 2) ≈ 0.88; P(|Z | < 2) ≈ 0.95
P(|Tν=4| < 3) ≈ 0.96; P(|Z | < 3) ≈ 0.997

Central behaviour quite similar!

For ν = 4, using scipy.stats.t.ppf and scipy.stats.norm.ppf,
compare probability in the tails for various significance levels; that is,
P(|Tν=4| > tν=4,α/2) < α vs. P(|Z | > zα/2) < α:
α = 0.1 : tν=4,α/2 ≈ 2.13; zα/2 ≈ 1.64 using t.ppf(1−α/2), norm.ppf(1−α/2)

α = 0.05 : tν=4,α/2 ≈ 2.78; zα/2 ≈ 1.96
α = 0.003 : tν=4,α/2 ≈ 6.44; zα/2 ≈ 2.97

Very different because of behaviour in the tails (“fatter” or “heavier”-tailed distribution)!
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More general rule(s) for non-Normal distributions?

If location and scale parameters known:

Definition (Chebyshev’s Inequality)
If X is a random variable with finite mean µ and finite non-zero standard deviation σ, then

P

(∣∣∣∣∣X − µσ

∣∣∣∣∣ ≥ k

)
≤

1

k2
(valid for k > 1),

Two-tailed version, can be modified for asymmetric distributions.

Ex: P(|Z | ≥ 2) ≤ 0.25;P(|Z | ≥ 3) ≤ 0.11; compare to Empirical Rule for Normal distributions.

If µ, σ unknown:

Definition (Markov’s Inequality)
If X is a nonnegative random variable and a > 0,

P(X ≥ a) ≤
E[X ]

a

Two-tailed version also exists.
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Interval estimates
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Summary and references

When generating estimates for parameters, a point estimate alone is not enough.

An interval estimate is a range of values around the point estimate such that a probabilistic
statement can be made about its relation to the true parameter value. Such a statement is
usually in terms of the confidence we have that the range includes a certain fraction of possible
values that are observed for the parameter in terms of its estimate.

Example: an experiment to determine the mass of a rock results in a measurement of
(0.2± 0.05) kg, where 0.05 kg is the 1σ uncertainty in the measured mass. For Gaussian
uncertainties, this means that 68.3% of the measured masses will lie in the range [0.15, 0.25] kg.

Note that an interval estimate requires an estimate of the variance of the distribution of
observed values. We will look at various ways of estimating this variance as well.

References:

“Statistics: A Guide and Reference to the Use of Statistical Methods in the Physical Sciences” -
R. J. Barlow.

“Dos and don’ts of reduced chi-squares” - R. Andrae, 2010.

Wall & Jenkins.
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