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Review

Confidence intervals

CI for Gaussian with known σ (Standardisation).

CI for Gaussian with unknown σ (Studentisation).
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Example: CI for (normal approx of) Binomial distribution

Flip a coin N = 100 times. Observe: 75 heads, 25 tails.

What is the MLE for P(Head)? What is the 95% CI for this estimate?

Recall: for a Binomial distribution with N trials and k successes, if θ = P(1 success),
E[k] = Nθ, and Var[k] = Nθ(1− θ).

Likelihood: L (θ) ∝ θk (1− θ)N−k – Beta distribution.

MLE (See Lecture 6, Slide 4): θ̂MLE =
k

N
= 0.75.

Var[θ̂MLE] = Var
[ k

N

]
=

1

N2
Var[k] =

θ̂MLE(1− θ̂MLE)

N
≈ 0.0019

=⇒ σ̂(θ̂MLE) ≈ 0.043.

Asymmetric function, construct CI with care.

However, this problem satisfies conditions for a Gaussian approximation:

L (θ) ≈N
(
θ̂MLE, σ

2
∧

(θ̂MLE)
)

= N (0.75, (0.043)2). C
o

d
e

fo
r

p
lo

t
a

va
il
a

b
le

h
er

e.

A 95% CI for this problem is also a 2σ CI: [0.75− 2× 0.043, 0.75 + 2× 0.043] ≈ [0.66, 0.84].
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CIs for asymmetric distributions

Example: L (θ) = f N (µ1, σ
2
1) + (1− f )N (µ2, σ

2
2) with 0 < f < 1 (mixture of Gaussians).

Highly asymmetric: mean 6= median 6= mode!

Three different ways to specify a CI:

1 Central (“equal tail”) CI: equal areas rejected on
either side (therefore associated with median).

2 Shortest CI: interval chosen closest to region of
highest density (therefore usually contains mode).

3 Symmetric CI: upper and lower boundaries
equidistant from location parameter (in this case,
the MLE, = the mode).

Let’s construct 50% CIs of each type...

C
o

d
e

fo
r

p
lo

t
a

va
il
a

b
le

h
er

e.
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Asymmetric distributions: Central (equal tail) CI

A 100(1− α)% central CI is [θ−, θ+] such that P(θ̂ ≤ θ−) = P(θ̂ ≥ θ+) = α/2.

Only one equal-tail CI is possible for a given α.

The central CI is the sensible choice in most cases.

In our specific Gaussian-mixture example,
the 50% central CI encloses the mean, median, and mode
of the distribution.

Verify: P(left) = P(right) = 50/2 = 25%.

Central CI width for this example: 0.53 + 0.68 = 1.21.

What happens to the central CI as its width shrinks?

C
o

d
e

fo
r

p
lo

t
a

va
il
a

b
le

h
er

e.
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Asymmetric distributions: Shortest CI

The shortest 100(1− α)% CI is [θ−, θ+] such that, for that α, θ+ − θ− is minimum.

Only one shortest CI is possible for a given α [specify rule for multimodal distributions!].

The shortest CI picks out the densest (highest total probability per unit width) part of the
distribution.

Useful for multimodal distributions such as this example – selects the global maximum of the
distribution. Useful in multidimensional space.

Bayesian estimation: likelihood → posterior probability
distribution for the parameter. The shortest CI is called
the highest posterior density (HPD) interval.

Verify: P(left) + P(right) ≈ 0.45 + (1− 0.95) = 50%.

Shortest CI width for this example: 0.85− 0.09 = 0.76.

What happens to the shortest CI as its width shrinks?

Caution!

Sharply peaked, close local maxima – shortest CI may be
composed of disconnected regions. C

o
d

e
fo

r
p

lo
t

a
va

il
a

b
le

h
er

e.

Statistics for Astronomers: Lecture 10, 2020.11.04

Prof. Sundar Srinivasan - IRyA/UNAM 6

http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/confidence_intervals.py


Asymmetric distributions: Shortest CI

The shortest 100(1− α)% CI is [θ−, θ+] such that, for that α, θ+ − θ− is minimum.

Only one shortest CI is possible for a given α [specify rule for multimodal distributions!].

The shortest CI picks out the densest (highest total probability per unit width) part of the
distribution.

Useful for multimodal distributions such as this example – selects the global maximum of the
distribution. Useful in multidimensional space.

Bayesian estimation: likelihood → posterior probability
distribution for the parameter. The shortest CI is called
the highest posterior density (HPD) interval.

Verify: P(left) + P(right) ≈ 0.45 + (1− 0.95) = 50%.

Shortest CI width for this example: 0.85− 0.09 = 0.76.

What happens to the shortest CI as its width shrinks?

Caution!

Sharply peaked, close local maxima – shortest CI may be
composed of disconnected regions.

C
o

d
e

fo
r

p
lo

t
a

va
il
a

b
le

h
er

e.

Statistics for Astronomers: Lecture 10, 2020.11.04

Prof. Sundar Srinivasan - IRyA/UNAM 6

http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/confidence_intervals.py


Asymmetric distributions: Shortest CI

The shortest 100(1− α)% CI is [θ−, θ+] such that, for that α, θ+ − θ− is minimum.

Only one shortest CI is possible for a given α [specify rule for multimodal distributions!].

The shortest CI picks out the densest (highest total probability per unit width) part of the
distribution.

Useful for multimodal distributions such as this example – selects the global maximum of the
distribution. Useful in multidimensional space.

Bayesian estimation: likelihood → posterior probability
distribution for the parameter. The shortest CI is called
the highest posterior density (HPD) interval.
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Asymmetric distributions: Symmetric CI

Unlike the other two types of CI, symmetric CIs are not unique. They depend on the choice of
centre.

One possible choice is the mean value. In MLE, the more obvious choice is the ML estimate,
which is also the mode of the likelihood function.

A symmetric CI around a point estimate θ̂0 is [θ−, θ+] such that P(θ− ≤ θ̂ ≤ θ+) = 1− α
and θ̂0 − θ− = θ+ − θ̂0 (equal width on either side of θ̂0).

Verify: P(left) + P(right) ≈ 0.45 + (1− 0.95) = 50%.

Symmetric CI width for this example: 0.88− 0.11 = 0.77.

Caution!

Multimodal, (almost-)symmetric functions – MLE might
pick one peak over the other!

Highly asymmetric functions: if centre of the CI is very
far from median, not possible to define a symmetric CI
for small α (also in this example!).
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Example of an asymmetric distribution: Binomial

Flip a coin N = 5 times. Observe: 1 head, 4 tails.

What is MLE of P(Head)? What is the 95% central CI on this estimate?

Once again, E[k] = Nθ, and Var[k] = Nθ(1− θ). Likelihood: L (θ) ∝ θk (1− θ)N−k .

θ̂MLE =
k

N
= 0.2 σ̂(θ̂MLE) =

√
θ̂MLE(1− θ̂MLE)

N
≈ 0.179, but not as useful in this case.

Can’t use Gaussian approximation (e.g., mode close to zero, Gaussian will result
in non-negligible probability for negative values, unphysical!).

To compute CI, need to know CDF of normalised version of L (θ) – does it
resemble any standard PDF?

Beta distribution: Beta(α, β) ∝ θα−1(1− θ)β−1.

By comparison, α = k + 1 = 2, β = N − k + 1 = 5.

Python to the rescue:

scipy.stats.beta.ppf(0.025, alpha, beta) = 0.043 #lower bound

scipy.stats.beta.ppf(1-0.025, alpha, beta) = 0.641 #upper bound C
o

d
e

fo
r

p
lo

t
a
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a
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95% CI: [0.043, 0.641].
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Algorithm for constructing the shortest CI

You must have either have the CDF or must compute it from the data (“empirical distribution
function” – you’ve already encountered concept!).

from statsmodels.distributions.empirical distribution import ECDF

ecdf = ECDF(x)

plt.plot(ecdf.x, ecdf.y)

In principle, we must try to construct a 100(1− α)% CI for each point on the CDF, then find the shortest interval among these.

In practice, the largest value of X− (lower limit for CI) will be X(j) such that P(X ≤ X(j)) ≤ α
(only these can “extend” over a mass ≥ 1− α).

Similarly, the largest value of X+ (upper limit for CI) will be X(j) such that P(X ≥ X(j)) ≤ α
(only these already contain mass ≥ 1− α).

1 Sort the points in ascending order if they aren’t already sorted.

2 Identify the first j points such that P(X ≤ X(j)) ≡ CDF(X(j)) ≤ α.

3 For each of these points X−, find x+ such that P(X− ≤ X < X+) ≥ 1− α. Compute the
interval width X+ − X−.

4 Find the X−, X+ pair such that the width is minimum.

You will write code for this as part of the midterm!
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2 Identify the first j points such that P(X ≤ X(j)) ≡ CDF(X(j)) ≤ α.

3 For each of these points X−, find x+ such that P(X− ≤ X < X+) ≥ 1− α. Compute the
interval width X+ − X−.

4 Find the X−, X+ pair such that the width is minimum.

You will write code for this as part of the midterm!
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Algorithm for constructing the shortest CI

You must have either have the CDF or must compute it from the data (“empirical distribution
function” – you’ve already encountered concept!).

from statsmodels.distributions.empirical distribution import ECDF

ecdf = ECDF(x)

plt.plot(ecdf.x, ecdf.y)

In principle, we must try to construct a 100(1− α)% CI for each point on the CDF, then find the shortest interval among these.
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Midterm exam

Monday, 2020.11.09, 09:00 – Tuesday, 2020.11.10, 17:00.

Discussion on Zoom: Tuesday, 2020.11.10, 11:00 – 12:00.
(email anytime!).

“Open Internet” exam
but first consult the lecture notes and homework solutions!
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