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Review

Empirical distribution function.

Bootstrap.

For bootstrap CIs, good discussion here.
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http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdf


Hypothesis testing
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Lady Tasting Tea

Ronald Fisher offered [Blanche Muriel] Bristol a cup of hot tea that he had just drawn from an
urn. Bristol declined it, saying that she preferred the flavour when the milk was poured into the
cup before the tea. Fisher scoffed that the order of pouring could not affect the flavour. Bristol
insisted that it did and that she could tell the difference. Overhearing this debate, William
Roach said, ’Let’s test her’.

– “Lady Tasting Tea”, Rod Sturdivant.

Experimental setup: prepare 8 cups of tea, 4 of which have milk poured in before tea.

Null hypothesis: Subject has no special ability. Test statistic: # cups successfully characterised.

P(≥ 3 of 4 cups correct by chance): (16 + 1)/70 ≈ 23%.

P(4 of 4 cups correct by chance): 1/70 ≈ 1.4% < 5%.

Critical region for rejection of null hypothesis: 4 out of 4 possible cups successfully characterised.

P(4 of 4 cups correctly characterised) (1/70 ≈ 1.4% < 5%).

Bristol correctly characterised all eight cups.
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Introduction
“Do the data provide sufficient evidence to conclude that we must depart from our original
assumption concerning the state of nature?”

– J. C. Watkins, An Introduction to the Science of Statistics.

What kinds of questions can be answered? (from Barlow)

What is the straight line fit for y vs. x? Does y increase with x?

What is the strength of the effect? Is the effect present?

What are the values of a and b? Do a and b have the same value?

Formulate the question precisely by expressing it as a hypothesis.

Statistical test: Procedure. Input: samples. Computes: test statistic. Output: a hypothesis.

Hypothesis: assertion/statement that can be tested using observations (e.g., “the population
mean is < 5”).

Can be simple (complete description of the underlying population distribution
e.g., “the errors are Gaussian with mean 0 and variance 1”)

or composite (underlying population distribution unclear)
e.g., “the mean is not 0”.

Can be two-tailed/non-directional test e.g., “θ = θ0”, “−5 ≤ µ ≤ 5”.

or one-tailed/directional test e.g., “θ > θ0”, “µ < 5”.
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The Null Hypothesis H0

Typically, a statement expressing lack of correlation between observations and the suggested
model (i.e., the data are not significantly different from noise), and the alternate hypothesis HA

suggests a relationship.

Want to demonstrate that <effect> exists? Start by stating it doesn’t, then find out whether
data provides enough evidence to reject H0 – hypothesis testing.

“[The Null Hypothesis is] never proved or established,
but is possibly disproved, in the course of experimentation.”

– R. A. Fisher.
W. H. Self, et al. JAMA,

10.1001/jama.2020.22240.

If the probability of the data occurring by chance is below a threshold (significance), then we
reject the null hypothesis.

Frequentist inference: probability that a given hypothesis is correct is either 0 or 1.
Just because we reject H0 on the basis of one dataset doesn’t mean H0 is wrong or HA is correct.
At 95% confidence, frequentist procedure will reject H0 for 5% of datasets drawn from H0!
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Type I and II Errors

Choose null (H0) and alternate (HA or H1) hypotheses.

Compute significance (α) using data.
α is the level of tolerance for incorrectly rejecting H0.
Outcome “significant” if small chance of occurrence from H0.

Given α, only two possible outcomes: reject/unable to reject H0.

S
o

u
rc

e:
W

ik
ip

ed
ia

“H0 rejected at level α for these data.”

Acceptance region: set of test statistic values for which we fail
to reject H0.
Rejection or critical region: set of test statistic values for
which we are able to reject H0.
Critical value: the threshold separating acceptance and
rejection regions.
p-value: Assuming H0 is true, the probability of observing a
result at least as extreme as the observed value of the test
statistic.
Error rates:

Type I (false +ve, false alarm): P(reject H0 | H0 true) ≡ α.
Type II (false −ve): P(don’t reject H0 | H0 false) ≡ β.
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Type I/II errors and classification algorithms

Classification typically involves placing boundaries in multidimensional parameter space to
separate “clusters” of objects.

Example: YSO researcher wants to identify promising massive embedded YSO candidates for
spectroscopic follow-up. She devises cuts in colour-magnitude and colour-colour space to
separate “high-reliability” YSO candidates from other kinds of sources with similar colours (e.g.,
highly evolved dusty AGB stars, background galaxies).

Type I error = false +ve = contamination (“spurious detections”) to the YSO candidate sample.
Type II error = false −ve rate (“missed sources”) reduces the completeness of the YSO
candidate sample.
Compromise between increasing completeness and decreasing contamination – received
operating characteristic (ROC) curve (true +ve rate vs. true −ve rate).

See Sec. 4.6.1 in the AstroML book.
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separate “clusters” of objects.

Example: YSO researcher wants to identify promising massive embedded YSO candidates for
spectroscopic follow-up. She devises cuts in colour-magnitude and colour-colour space to
separate “high-reliability” YSO candidates from other kinds of sources with similar colours (e.g.,
highly evolved dusty AGB stars, background galaxies).

Type I error = false +ve = contamination (“spurious detections”) to the YSO candidate sample.
Type II error = false −ve rate (“missed sources”) reduces the completeness of the YSO
candidate sample.
Compromise between increasing completeness and decreasing contamination – received
operating characteristic (ROC) curve (true +ve rate vs. true −ve rate).

See Sec. 4.6.1 in the AstroML book.
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Hypothesis testing: basic procedure

1 Identify a null hypothesis and an alternate hypothesis, choose significance threshold α.

2 Design test statistic T . Assuming H0 is true, obtain the distribution of T .

Usually complicated/unknown; use the asymptotic distribution (N →∞).

3 Using the data, compute t, the observed value of T .

4 Compute the p-value: p ≡ P(T = t|H0 is true).

5 If the p < α, the tolerance for false negatives, reject H0 at significance level α.

Example 1

Observation: Tossing a coin 10 times, we observe 9 heads.

Statistic: S10, the total number of heads in 10 tosses.

H0: fair coin. Under H0, S10 ∼ Binomial(1/2).
HA: p 6= 0.5 (two-tailed).

Significance chosen: α = 0.05.

p-value: P(S10 ≥ 9) =
(10

9

)1

2

10

+
(10

10

)1

2

10

≈ 0.0098.

Since the p-value (= 0.009) < significance, reject H0 at significance level α = 0.05.
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Hypothesis testing contd.

Example 2 (Barlow 8.2.2)
55% of patients suffering from a disease are spontaneously cured within a week.
A new medication is tested on 105 patients. How many patients need to be cured in a week to
decide whether the medication is effective at 5% significance?

H0: p ≤ 0.55; HA: p > 0.55 (one-tailed test)

Statistic: k, the total number of people cured within a week.

k ∼ Binomial(0.55) under null hypothesis.

Significance chosen: α = 0.05.

We are looking for kα such that P(k ≥ kα) < α.

“To reject H0 at 5% significance, more than ( ) patients need to be cured within a week.”
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Statistical Power and the likelihood-ratio test

Statistical power of a test: P(reject H0 | H0 false) ≡ 1− β
As critical/threshold value ↑, α ↓ but power also ↓.

Efficiency of a test: sample size required to achieve a given power.

Ideal situation: maximum power for a given α. Not possible in general.
(e.g., unknown or complicated distribution, composite hypotheses).

Neyman-Pearson Lemma
If both H0 and HA are simple, pT (t | H0 true) and pT (t | HA true) known.

=⇒ the likelihood ratio is the most powerful test statistic.

Likelihood ratio =
likelihood HA true given data

likelihood H0 true given data
> threshold =⇒ reject H0.

If H0, HA simple, write in terms of parameter values: LR =
L (θ = θ1 | HA true)

L (θ = θ0 | H0 true)
> threshold.

The value of the threshold is picked such that the false-alarm probability is α.

Typically, for convenience, written in terms of log-likelihood.

Recall: for Gaussian variables, ln L = constant−
1

2
χ2.

Wilks’ Theorem: asymptotic behavior of ln LR under H0 is χ2!
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Likelihood-ratio test example

Xi (i = 1, · · · ,N) ∼ N (µ, σ2) with σ = 4 and µ unknown. H0: µ = 0, HA: µ = 4.

Find N and LR threshold such that we are able to reject H0 at significance α = 0.05 and our test has power 1− β = 0.95.

For both hypotheses, L (µ) =
N∏
i=1

(
1

√
2πσ

)N

exp

[
−

1

2

(
Xi − µ
σ

)2]
=⇒ ln L (µ) = const.−

1

2σ2

N∑
i=1

(Xi − µ)2

=⇒ ln LR = −
1

2σ2

N∑
i=1

(
(Xi − µ2

)2 − (Xi − µ1
)2

)
= −

1

2σ2

N∑
i=1

(
2Xi (µ1

− µ
2

) + µ
2

2
− µ2

1

)

Plugging in µ
1

= 0, µ
2

= 4, ln LR = −
1

2σ2

N∑
i=1

(
− 8Xi + 16

)
=

N

4

(
X − 2

)
In order to reject H0, we need ln LR =

N

4

(
X − 2

)
> some threshold. Since N is (an unknown) constant, we need X > some

threshold c (say).
this makes sense – in order to distinguish the data from noise, its mean has to be > 0.

Recall: CLT means that x ∼N (µ, σ2/N).

α ≡ P(X > c | H0) = P(X > c | µ = 0) = P

(
X

σ/
√
N
>

c

σ/
√

N

)
= 1− Φ

(
c

σ/
√

N

)
= 0.05.

=⇒ c
√

N = σΦ−1(1− 0.05) = 4×scipy.stats.norm.ppf(0.95)=⇒ c
√

N ≈ 4× 1.64.

Similarly, 1− β ≡ P(X > c | HA) = P(X > c | µ = 4) = 0.95 =⇒
c − 4

σ/
√
N

= −1.64.

=⇒ N ≥ 11, c ≥ 2.
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Parametric tests

Tests in which either H0 or the test statistic corresponding to H0 assumes a distribution with
associated parameters.

One-sample test: compare a parameter for a test sample to a distribution specified by H0.
Two-sample test: compare a parameter between two test samples.

Do they have the same mean?

known variance or N > 30: use Z statistic (Z -test).

unknown variance and N < 30: use t statistic (t-test).

Both these tests compare data to normal distributions. There are other tests for non-normal
distributions.

Do they have the same variance?
Use the F -test.
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Z - and t-test example (one sample)

A manufacturer claims that their 4M-pixel CCD detectors maintain an average of 1000 bad
pixels. An inspection of 40 sample CCDs showed an average of 1200 bad pixels with a standard
deviation of 500. Can the company’s claim be rejected at the 5% significance level?

H0: µ = 1000. HA: µ 6= 1000 (two-tailed test).

The standard deviation was estimated from the data, but N > 30, so we can use the Z -statistic.

Z ≡
X − µ
σ/
√
N
≈

X − µ
s/
√

N
=

1150− 1000

500/
√

40
≈ 1.898.

The p-value is p ≡ P(Z > 1.898) = 1− Φ(1.898) = 1− scipy.stats.norm.cdf(1.898) ≈ 0.03 < α = 0.05.

Therefore, the claim is rejected at the 5% significance level.

See documentation for statsmodels.stats.weightstats.ztest – options and alternatives!

Now, assume N = 20. We have to use the t-statistic.

Can the inspector reject the company’s claim at the 5% level?

See documentation for scipy.stats.ttest 1samp – options and alternatives!
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