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Review

Hypothesis testing.

Null hypothesis, simple and composite hypotheses. One/two-tailed hypotheses.
Type | and |l errors, p-value, statistical power.

Likelihood-ratio test.

One-sample Z- and t-tests.




2-sample tests: independent & dependent/paired samples

Independent samples Var[x; — X,] = Var[x;] + Var[x,].

Dependent samples: {x;;} and {x;}, i =1---N, such that x; ; related to x ;.
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Example: Flux in the pixels of an image before and after background subtraction.
S i=51,—B; strong correlation, typically p ~ 1.
Hp: The mean flux per pixel is the same after background subtraction.
One way to reduce overall variance is to pair samples (“beating vV N"; see Barlow).
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If p >0, Var[x; — X,] < Var[x] + Var[x,] and vice versa.

Also called paired/matched/correlated samples.

Example: Flux in the pixels of an image before and after background subtraction.
S i=51,—B; strong correlation, typically p ~ 1.
Hp: The mean flux per pixel is the same after background subtraction.
One way to reduce overall variance is to pair samples ( “beating VN"; see Barlow).

Since we typically compute statistics in terms of the variance (e.g., by standardisation), the
behaviour of the statistic changes for dependent samples.

As p 1, Var[difference between means] |
For a fixed threshold/critical value, P(reject Ho|H, true) |, Type | error |, power 1.
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Two-sample Z-test

Independent samples {x; ;} (N1 points), {x;} (N2 points) with X; ~ JV(,U,J',O'J?), j=12.

Question: is u; = pp? Convert to a one-sample problem:
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Example:

Sarah selects 50 AGN from a famous dataset of Type-I AGN and 45 AGN from her own dataset.

The population standard deviations of the SFRs of the samples are 1.8 and 0.95 M, yr_1

1

respectively.

Sarah finds sample means of 2.2 and 3.2 M, yr™ " respectively. At the 95% confidence level, does her dataset consist of

AGN with systematically higher SFRs than those of the famous dataset?
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respectively.

Sarah finds sample means of 2.2 and 3.2 M, yr™ " respectively. At the 95% confidence level, does her dataset consist of
AGN with systematically higher SFRs than those of the famous dataset?

Ho: py = pq- Hat py > py (right-tailed test).
X~ W(p;,o’?/N;),with i=1,2=x, —x; ~ N (, — ul,ag/Nl +af/N2).
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Z= % —y — ) = 2 1 (because 1, = p; under Hp) ~ 3.43.
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p-value: P(Z > 3.43) =~ 0.0003 < « = 0.05, therefore Hy can be rejected at 5% significance.




Two-sample t-tests: independent samples

If 01,02 unknown and o1 = o3, can use “regular’ t-test if Ny =~ N».
If Ny &~ Ny, can also use “regular” test when o1 # o3.
If 01,02 unknown and o1 # o, or Ni # Ny, use Welch's t-test.

If we don't know o1, 02, how the hell can we know if they are (un)equal?! — F-test.
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Two-sample t-tests: dependent/paired samples

N; = N> = N means we can connect the i*h elements of the two samples.

Once again, define ¥y =X — X,, but now use the fact that the samples are paired:
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N N
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Unbiased sample std s, = J = E (vi—y)? = \j N_1 E y? —
i=1 i=1

(Only one mean, y, is computed from the data {y;})

y—-0 -
sy/\m sy/\F

This t-statistic has #dof = v = N — 1 (N data pairs, one mean computed).

Studentise y: t = (|f Hy is true).
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Unbiased sample std s, = = Z(y:' -Y)

N
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(Only one mean, y, is computed from the data {y;})
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This t-statistic has #dof = v = N — 1 (N data pairs, one mean computed).

Studentise y: t = (|f Hy is true).

Implementation: , more versatile than demonstrated here.
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Trying out t-tests

@ » Download this Jupyter notebook
© » Navigate to Colaboratoryl.
® Sign in

@ Click on "Upload” and upload the notebook you downloaded in step 1.



https://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/Astrostatistics_Lecture13_20201202.ipynb
https://colab.research.google.com/notebooks/intro.ipynb
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Recall: If X ~ A (u, 0?), the sample variance S? ~ ﬁxZ(N —-1).
Consider two samples with sample variances 512 < 522. Ho: 0y =0, =0.
2 2
Under H,, the ratio F = 5—22 > 1 is a ratio of two reduced x?2 variables of the form X—”.
v

1
This ratio has the F-distribution with degrees of freedom (v, = Np — 1,1, = Ny — 1).

Asymptotic behaviour: for large Ny, Na,
1
Z = > In F is approximately distributed as JV(%(l/I/l —1/v,), %(1/1/1 + 1/1/2)).

Example (Barlow):
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Ny = 12,512 =10.9, Np = 7,522 =65=— F = 5—12 =1.68.
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Under H,, the ratio F = —22 > 1 is a ratio of two reduced x? variables of the form 2.
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p-value = P(F > 1.68) =1 — P(F < 1.68)
= 1— scipy.stats.f.cdf(1.68, 12-1, 7-1)
~ 0.27 > a = 0.05.
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2

p-value = P(F > 1.68) =1 — P(F < 1.68)

= 1— scipy.stats.f.cdf(1.68, 12-1, 7-1)

~ 0.27 > o = 0.05.

No statistical evidence for difference in the variances.

Safe to use t-test on these data assuming that oy =0,

See documentation for and Section 4.7.6 in the AstroML book.
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Consider two samples with sample variances 512 < 522. Ho: 0y =0, =0.
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Under H,, the ratio F = —22 > 1 is a ratio of two reduced x?2 variables of the form X—”.
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This ratio has the F-distribution with degrees of freedom (v, = Np — 1,1, = Ny — 1).

Asymptotic behaviour: for large Ny, Na,
1
Z = > In F is approximately distributed as JV(%(l/I/l —1/v,), %(1/1/1 + 1/1/2)).

Example (Barlow): Example:
sz Given Ny = 10, N, =7,and S2 = (1+X) S% (A >0

Ny =12,52 =109, N, = 7,52 = 6.5 = F = —L = 1.68. ! pia = o 2 = ( )si ).
1 2 522 find X such that Hy is rejected with 99.5% confidence.

p-value = P(F > 1.68) =1 — P(F < 1.68)

= 1— scipy.stats.f.cdf(1.68, 12-1, 7-1)

~ 0.27 > a = 0.05.

No statistical evidence for difference in the variances.

Safe to use t-test on these data assuming that oy =0,

See documentation for and Section 4.7.6 in the AstroML book.
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