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Review: Bayesian inference

Prior selection: choose a prior as long as it isn't a delta function.

Prior-dominated vs. evidence/data-dominated posterior.

Bayesian point estimates — maximum a posteriori (MAP) estimate.

Bayesian interval estimates — credible intervals; the highest posterior density interval.
Informative and non-informative priors. Improper priors.
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Prior and posterior predictive distributions

Prior predictive distribution: Before the experiment, given the prior probability distribution m(6)
of the unknown parameter, what is the probability distribution of expected data values?

N
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Posterior probability distribution: Given the data, what is the probability distribution of the
unknown parameter?

Discrete: P(0;|x) = M Continuous: p(6]x) = M
> P(x]6;) 7(67) / p(x|0) =(0) do
i=1

Posterior predictive distribution: Given the posterior probability distribution, what is the
probability distribution of data values in a future experiment?

N N
Discrete: P(X|x) = Y P(X[0;,x) P(0;lx) = > _ P(X]6;) P(6ilx) (given 0, XLx).
i=1 i=1

Continuous: p(X|x) = /p(}|9,x) p(0|x) do = /p(}|9) p(0|x) do
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Prior and posterior predictive distributions: example

A fair coin is tossed once. If the outcome is H, a red light is turned on. If not, the coin is tossed
again. If the outcome is H, the red light turns on. If not, a blue light turns on.

Given that a red light turned on, (1) what is the posterior distribution for outcomes of the first
toss? (2) what are the prior and posterior predictive distributions for the observations?
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Posterior predictive distribution for future data:
P(red|red) = P(red|t = H)P(t = H|red) + P(red|t = T)P(t = T|red) =1-2/3+1/2-1/3=5/6.
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The Jeffreys Prior

" olnZ A
Recall: The MLE of a parameter 0 is 0,,; 1, such that g0 =0at =0y

Cramér-Rao Bound: Var[f,,; ;] > Z(8)~!, where Z(8) is the Fisher Information.

aln£\? . 22
I(0)=E = (under some conditions) = —E| ———

a0 962




The Jeffreys Prior

" olnZ A
Recall: The MLE of a parameter 0 is 0,,; 1, such that g0 =0at =0y

Cramér-Rao Bound: Var[f,,; ;] > Z(8)~!, where Z(8) is the Fisher Information.

aln£\? . 22
I(0)=E = (under some conditions) = —E| ———

a6 562

Jeffreys Prior: a non-informative prior that is also invariant over transformation of the parameter.

7,(0) o< \/Z(0). For multidimensional case, ﬂJ(ﬁ) o y/Det Z(6).
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Jeffreys Prior: a non-informative prior that is also invariant over transformation of the parameter.

7,(0) o< \/Z(0). For multidimensional case, ﬂJ(ﬁ) o y/Det Z(6).

Invariance: If 9 is a function of 0 (e.g., § = P(Head) and ¢ = P(Tail) =1 —6),
do do \2 a2\, do 2 do o1n.2\?
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Jeffreys prior example: coin toss (Bernoulli trial)

Let P(success) = 0. We perform one coin toss and obtain a value X = x.
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Recall: for Bernoulli distribution, E[X] = 0, Var[X] = ]E[(X - IE[X])Z] = 0(1—9).
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Let P(success) = 6. We perform one coin toss and obtain a value X = x.
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Recall: for Bernoulli distribution, E[X] = 0, Var[X] = ]E[(X - IE[X])Z] = 0(1—9).
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prior mean: = 0.5 as expected.
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Posterior: p(f|data) oc £(0) 7,(0) = Beta(x +1,2 — x) x Beta(i, 5) = Beta(x—i— 25 —x).
Posterior mean: %(x + %) = %(sample mean + prior mean). Effective sample size: 2.
Note that the posterior and prior are both Beta distributions. In such a case, we say that the

Beta distribution is the conjugate prior to a Bernoulli likelihood. The Beta distribution is also
conjugate to binomial likelihoods (cf. Lecture 17).




Jeffreys prior for a Poisson distribution

Poisson problem with unknown rate parameter A and observation X = x (say).

A e
Recall: P(X = x) = I JE[X] = X; Var[X] = A
x!
X a—A
Likelihood: Z(A) = > :
x!
2
oIz dln.2(N\)
ek SV AN = AT =7 = =7
Jeffreys prior: Y [ Z(N) E[( Y 7 7, (N Z(A) =7

Prior predictive distribution?
Posterior?

Posterior predictive distribution?
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Jeffreys priors for a univariate normal distribution

Homework.




More on priors

See » Jaynes (1968) for a good discussion of the applicability of this

procedure to problems in fundamental physics.



https://bayes.wustl.edu/etj/articles/prior.pdf

