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Review: bolometric magnitude and bolometric correction

Bolometer – measures incident power (regardless of frequency of incident photons) by heating a
material whose electrical resistance is temperature-dependent.

Total incident power = Area of detector × incident integrated flux ∝
∞∫

0

dν Fν .

The integrated flux is therefore also called the bolometric flux, and is represented by Fbol.

Bolometric magnitudes can then be defined similar to magnitudes in a broadband filter:
mbol = −2.5 log Fbol (app.), and Mbol = −2.5 log Lbol (abs.), so that µ = mbol −Mbol holds.

A broadband filter has a finite bandwidth (range of accepted wavelengths), so it only detects a
fraction of Fbol.
For a filter A, if we assume that FA ×∆λ = const.× Fbol or Fbol = const.× FA, then (taking
the distance to the source into account), we write the absolute bolometric magnitude as
Mbol = MA + BC . The quantity BC is called the bolometric correction.

In practice, we usually have one broadband magnitude. If we know the BC in that band for stars
of a certain type, we can estimate their luminosities.
The absolute magnitude in one band → observational proxy for the luminosity.
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Review: bolometric magnitude and bolometric correction

BC as a function of wavelength

Ideal: filter choice minimises BC for target star.

http://mips.as.arizona.edu/∼cnaw/sun.html

Compare Mbol,� = 4.74 mag to the value in
the following filters:
Johnson V , 2MASS Ks, Spitzer IRAC 4.5 µm.

Of the three, the V -band is closest to λpeak.

Results will change if location of λpeak changes
w.r.t. filters (Homework #1).
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Review: Effective temperature and colour

T (star) changes with distance from the centre, but we only see radiation from its surface and
beyond.
Assume blackbody, use Stefan-Boltzmann Law to define an effective temperature:

L = 4πσR2T 4
eff , where R is the radius of the photosphere.

Teff is then also the temperature at the surface of the star.

From Wien’s Displacement Law, λpeak × Teff = constant
⇒ cooler stars peak at longer wavelengths.
⇒ we can use the terms “bluer” and “redder” when
comparing Teff .

Colour = ratio of fluxes at two wavelengths.

Ratio in linear space −→ difference in log-space. So,
Teff,hot > Teff,� > Teff,cool

⇒
(

FV

F4.5

)
hot

>

(
FV

F4.5

)
�
>

(
FV

F4.5

)
cool

⇒ (mV −m4.5)hot < (mV −m4.5)� < (mV −m4.5)cool

(note reversal!)
Broadband fluxes as a function of Teff
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Connecting observations to theory

The characteristics of stellar spectra (absolute flux, continuum shape, emission/absorption
features) depend on the physical parameters in the stellar atmosphere as well as the relationship
between these parameters.

These parameters influence the chemical composition, distribution of velocities, and
excitation/ionisation states of various species in the atmosphere.

We will now focus on general results and observational proxies for these parameters.
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Basic assumptions

Unless otherwise specified, we will assume the following:

1 Ideal gas: reasonable assumption for most regions of the star.

pVmol = RT , where Vmol is the molar volume (volume occupied by 1 mole of gas).

⇒ p = ρ
kT

µmp
, with µmp the mean molecular weight (mass of a “typical” particle in mp).

2 Hydrostatic equilibrium: ∇p = −ρg , where g =
GM

R2
.

3 Plane-parallel atmosphere: the piece of atmosphere under consideration is a flat “slab”,
such that the physical quantities are only a function of height from the surface of the slab:
f (r)→ f (z).
Only valid if scale height of atmosphere H << R.
Not valid in red giants! (“photosphere” difficult to define here!)
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Illustration: extent of the solar photosphere

Over the photospheric region, ρ changes by ∼ 102, T
changes by 2× ⇒ assume T = constant = Teff .

g also changes very slowly, as the enclosed mass is almost
constant and H << R (plane-parallel approx.)

The equation of hydrostatic equilibrium is then
dp

dz
= −ρg = −ρ

GM

R2
=

kTeff

µmp

dρ

dz
(Ideal Gas Law).

⇒ ρ(z) = ρ(z=0) exp
[
−

z

H

]
,

with scale height H =
kTeff

µmp

R2

GM
.

Figure on the bottom left confirms this exponential decay.

Substitute for R using the Stefan-Boltzmann Law,

H =
k

GMµmp

L

4πσT 3
eff

≈ 174 km, with µ = 1.

Teff and g have the dominant effect on nature of the
atmosphere.

Stellar Atmospheres: Lecture 2, 2020.04.15

Prof. Sundar Srinivasan - IRyA/UNAM 7



Illustration: extent of the solar photosphere

Over the photospheric region, ρ changes by ∼ 102, T
changes by 2× ⇒ assume T = constant = Teff .

g also changes very slowly, as the enclosed mass is almost
constant and H << R (plane-parallel approx.)

The equation of hydrostatic equilibrium is then
dp

dz
= −ρg = −ρ

GM

R2
=

kTeff

µmp

dρ

dz
(Ideal Gas Law).

⇒ ρ(z) = ρ(z=0) exp
[
−

z

H

]
,

with scale height H =
kTeff

µmp

R2

GM
.

Figure on the bottom left confirms this exponential decay.

Substitute for R using the Stefan-Boltzmann Law,

H =
k

GMµmp

L

4πσT 3
eff

≈ 174 km, with µ = 1.

Teff and g have the dominant effect on nature of the
atmosphere.

Stellar Atmospheres: Lecture 2, 2020.04.15

Prof. Sundar Srinivasan - IRyA/UNAM 7



Illustration: extent of the solar photosphere

Over the photospheric region, ρ changes by ∼ 102, T
changes by 2× ⇒ assume T = constant = Teff .

g also changes very slowly, as the enclosed mass is almost
constant and H << R (plane-parallel approx.)

The equation of hydrostatic equilibrium is then
dp

dz
= −ρg = −ρ

GM

R2
=

kTeff

µmp

dρ

dz
(Ideal Gas Law).

⇒ ρ(z) = ρ(z=0) exp
[
−

z

H

]
,

with scale height H =
kTeff

µmp

R2

GM
.

Figure on the bottom left confirms this exponential decay.

Substitute for R using the Stefan-Boltzmann Law,

H =
k

GMµmp

L

4πσT 3
eff

≈ 174 km, with µ = 1.

Teff and g have the dominant effect on nature of the
atmosphere.

Stellar Atmospheres: Lecture 2, 2020.04.15

Prof. Sundar Srinivasan - IRyA/UNAM 7



Illustration: extent of the solar photosphere

Over the photospheric region, ρ changes by ∼ 102, T
changes by 2× ⇒ assume T = constant = Teff .

g also changes very slowly, as the enclosed mass is almost
constant and H << R (plane-parallel approx.)

The equation of hydrostatic equilibrium is then
dp

dz
= −ρg = −ρ

GM

R2
=

kTeff

µmp

dρ

dz
(Ideal Gas Law).

⇒ ρ(z) = ρ(z=0) exp
[
−

z

H

]
,

with scale height H =
kTeff

µmp

R2

GM
.

Figure on the bottom left confirms this exponential decay.

Substitute for R using the Stefan-Boltzmann Law,

H =
k

GMµmp

L

4πσT 3
eff

≈ 174 km, with µ = 1.

Teff and g have the dominant effect on nature of the
atmosphere.

Stellar Atmospheres: Lecture 2, 2020.04.15

Prof. Sundar Srinivasan - IRyA/UNAM 7



Illustration: extent of the solar photosphere

Over the photospheric region, ρ changes by ∼ 102, T
changes by 2× ⇒ assume T = constant = Teff .

g also changes very slowly, as the enclosed mass is almost
constant and H << R (plane-parallel approx.)

The equation of hydrostatic equilibrium is then
dp

dz
= −ρg = −ρ

GM

R2
=

kTeff

µmp

dρ

dz
(Ideal Gas Law).

⇒ ρ(z) = ρ(z=0) exp
[
−

z

H

]
,

with scale height H =
kTeff

µmp

R2

GM
.

Figure on the bottom left confirms this exponential decay.

Substitute for R using the Stefan-Boltzmann Law,

H =
k

GMµmp

L

4πσT 3
eff

≈ 174 km, with µ = 1.

Teff and g have the dominant effect on nature of the
atmosphere.

Stellar Atmospheres: Lecture 2, 2020.04.15

Prof. Sundar Srinivasan - IRyA/UNAM 7



Illustration: extent of the solar photosphere

Over the photospheric region, ρ changes by ∼ 102, T
changes by 2× ⇒ assume T = constant = Teff .

g also changes very slowly, as the enclosed mass is almost
constant and H << R (plane-parallel approx.)

The equation of hydrostatic equilibrium is then
dp

dz
= −ρg = −ρ

GM

R2
=

kTeff

µmp

dρ

dz
(Ideal Gas Law).

⇒ ρ(z) = ρ(z=0) exp
[
−

z

H

]
,

with scale height H =
kTeff

µmp

R2

GM
.

Figure on the bottom left confirms this exponential decay.

Substitute for R using the Stefan-Boltzmann Law,

H =
k

GMµmp

L

4πσT 3
eff

≈ 174 km, with µ = 1.

Teff and g have the dominant effect on nature of the
atmosphere.

Stellar Atmospheres: Lecture 2, 2020.04.15

Prof. Sundar Srinivasan - IRyA/UNAM 7



Illustration: extent of the solar photosphere

Over the photospheric region, ρ changes by ∼ 102, T
changes by 2× ⇒ assume T = constant = Teff .

g also changes very slowly, as the enclosed mass is almost
constant and H << R (plane-parallel approx.)

The equation of hydrostatic equilibrium is then
dp

dz
= −ρg = −ρ

GM

R2
=

kTeff

µmp

dρ

dz
(Ideal Gas Law).

⇒ ρ(z) = ρ(z=0) exp
[
−

z

H

]
,

with scale height H =
kTeff

µmp

R2

GM
.

Figure on the bottom left confirms this exponential decay.

Substitute for R using the Stefan-Boltzmann Law,

H =
k

GMµmp

L

4πσT 3
eff

≈ 174 km, with µ = 1.

Teff and g have the dominant effect on nature of the
atmosphere.

Stellar Atmospheres: Lecture 2, 2020.04.15

Prof. Sundar Srinivasan - IRyA/UNAM 7



Chemical composition

The spectral features also depend on the chemical composition of the star.

Credit: user:RJHall CC BY-SA 3.0,
via Wikimedia Commons.

Metallicity: mass fraction of elements heavier than He
(“metals”).
Hydrogen: X ≈ 0.7
Helium: Y ≈ 0.29⇒ by number, yHe ≈ 0.08
Everything else: Z ≈ 0.01

CNO Z ≈ 10−4, 12 + log

(
A

H

)
≈ 8.0),

Fe Z ≈ 10−6

MW stars in two populations:
Population I: restricted to the disk. Higher Z . Sun-like
and higher. Z� ≈ 0.019
Population II: Galactic halo. Lower Z . Sun-like and
higher. Z� ≈ 0.019
Population III: “Primordial”, very low Z .

Chemical composition also evolves as nucleosynthetic
products are brought out to the surface (convection,
rotation).
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Velocity and speed distribution

In thermal equilibrium at temperature T , the velocities of gas particles of mass m are
distributed according to a Gaussian distribution:

dP(v) = fraction of particles in with velocities in (v, v + dv) =
( m

2πkT

)3/2
exp

[
−

mv2

2kT

]
dv.

Spectral line with natural frequency ν0 from source with radial velocity vR Doppler shifted by
∆ν

ν0
=

vR
c

.

Thermal distribution of vR : dP(vR) =
( m

2πkT

)3/2
exp

[
−
mv2

R

2kT

]
dvR.

⇒ thermal component to Doppler broadening of spectral lines.

The volume element dv = dvxdvydvz (Cartesian) and = 4πv2dv (Spherical).

The spherical choice gives us the distribution of speeds, the Maxwell-Boltzmann Distribution:

dP(v) =
( m

2πkT

)3/2
exp

[
−

mv2

2kT

]
4πv2dv .
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Excitation

Electrons arranged in energy levels n = 1, 2, 3, · · · .

Excitation energy = ∆En1→n2 = En2 − En1

= Energy liberated upon de-excitation.
(1st) Ionisation potential = ∆E∞→1 ≡ I

⇒ Eground state = −I w.r.t. “free” electron. En ≤ 0 for
n = 1, 2, 3, · · · (bound states).

Collisional excitation: At T 6= 0, always some atoms in
excited states.

Fraction in state n:
Nn

N
=

gn

u(T )
exp

[
−

En

kT

]
.

N = total atoms, gn = statistical weight of nth level,

u(T ) = partition function =
∞∑
j=1

gj exp

[
−

Ej

kT

]
.

Relative fraction in levels m and n (m < n):
Nn

Nm
=

gn

gm
exp

[
−

∆En→m

kT

]
For hydrogen atom, gn = 2n2.
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Excitation - transitions in hydrogen-like atoms

Credit: user:OrangeDog CC BY-SA 2.5,
via Wikimedia Commons.

For light H-like (one-electron) atoms (H, He+),

Bohr model: En = −13.6
Z2

n2
eV.

⇒ ∆En2→n1 = 13.6

(
1

n2
1

−
1

n2
2

)
eV.

Transitions of H atom split into series based on n1:
n1 = 1: Lyman series, n1 = 2: Balmer, n1 = 3: Paschen,
n1 = 4: Brackett, n1 = 5: Pfund, n1 = 6: Humphreys.

n2 = 2→ n1 = 1: Lyman-α, n2 = 3→ n1 = 1: Lyman-β,
etc.

n2 = 3→ n1 = 2: Balmer-α, also “H-α”, etc.

Lyman series in UV/X-rays, Balmer in optical and
near-IR, others at longer wavelengths.
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