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Review: bolometric magnitude and bolometric correction

Bolometer — measures incident power (regardless of frequency of incident photons) by heating a
material whose electrical resistance is temperature-dependent.
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Total incident power = Area of detector X incident integrated flux o /du F..
0

The integrated flux is therefore also called the bolometric flux, and is represented by Fy,q).

Bolometric magnitudes can then be defined similar to magnitudes in a broadband filter:
Mpol = —2.5log Fre1 (app.), and Mo = —2.5log Lo (abs.), so that p = mye — Mpe) holds.

A broadband filter has a finite bandwidth (range of accepted wavelengths), so it only detects a
fraction of Fyq).
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Myo1 = Ma + BC.
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Bolometer — measures incident power (regardless of frequency of incident photons) by heating a
material whose electrical resistance is temperature-dependent.

oo
Total incident power = Area of detector X incident integrated flux o /du F..
0

The integrated flux is therefore also called the bolometric flux, and is represented by Fy,q).

Bolometric magnitudes can then be defined similar to magnitudes in a broadband filter:
Mpol = —2.5log Fro1 (app.), and Mo = —2.5log Ly, (abs.), so that = my — My, holds.

A broadband filter has a finite bandwidth (range of accepted wavelengths), so it only detects a
fraction of Fyq).

For a filter A, if we assume that Fg X AX = const. X Fpe or Fpo) = const. X Fa, then (taking
the distance to the source into account), we write the absolute bolometric magnitude as

Mo = My + BC. The quantity BC is called the bolometric correction.

In practice, we usually have one broadband magnitude. If we know the BC in that band for stars
of a certain type, we can estimate their luminosities.
The absolute magnitude in one band — observational proxy for the luminosity.
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Ideal: filter choice minimises BC for target star.
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Intensity, Sun-like blackbody

Ideal: filter choice minimises BC for target star.
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Intens

Sun-like blackbody

Johnson V
2MASS K.

Ideal: filter choice minimises BC for target star.

http://mips.as.arizona.edu/~cnaw/sun.html

Compare Myq1, o = 4.74 mag to the value in
the following filters:
Johnson V/, 2MASS K, Spitzer IRAC 4.5 pm.
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Intensity, Sun-like blackbody

Ideal: filter choice minimises BC for target star.

http://mips.as.arizona.edu/~cnaw/sun.html

Compare Myq1, o = 4.74 mag to the value in
the following filters:
Johnson V/, 2MASS K, Spitzer IRAC 4.5 pm.
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Of the three, the V-band is closest to Apeak-

Results will change if location of A,k changes
w.r.t. filters (Homework #1).

A(pm)

BC as a function of wavelength
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Review: Effective temperature and colour

T (star) changes with distance from the centre, but we only see radiation from its surface and

beyond.
Assume blackbody, use Stefan-Boltzmann Law to define an effective temperature:

L =4noR? T;‘H, where R is the radius of the photosphere.
Teg is then also the temperature at the surface of the star.
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Review: Effective temperature and colour

T (star) changes with distance from the centre, but we only see radiation from its surface and
beyond.

Assume blackbody, use Stefan-Boltzmann Law to define an effective temperature:

L =4noR? T:H, where R is the radius of the photosphere.
Tesr is then also the temperature at the surface of the star.

From Wien's Displacement Law, Apcakx X Teg = constant
=> cooler stars peak at longer wavelengths.

= we can use the terms “bluer” and “redder” when
comparing Teg.

Colour = ratio of fluxes at two wavelengths.

Ratio in linear space — difference in log-space. So,
Teff,hot > TeH,@ > Teff,cool

F F F
=z e ()
Fa.5/ hot Fas /o F1.5 / cool

= (my — mas)hot < (My — mas)e < (My — Mas)cool
(note reversal!)

Broadband fluxes as a function of T.¢p
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features) depend on the physical parameters in the stellar atmosphere as well as the relationship
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Connecting observations to theory

The characteristics of stellar spectra (absolute flux, continuum shape, emission/absorption

features) depend on the physical parameters in the stellar atmosphere as well as the relationship
between these parameters.

These parameters influence the chemical composition, distribution of velocities, and
excitation/ionisation states of various species in the atmosphere.

We will now focus on general results and observational proxies for these parameters.

—
TRvA



Basic assumptions

Unless otherwise specified, we will assume the following:

@) Ideal gas: reasonable assumption for most regions of the star.




Basic assumptions

Unless otherwise specified, we will assume the following:

@) Ideal gas: reasonable assumption for most regions of the star.

PVimol = ZT, where Vi, is the molar volume (volume occupied by 1 mole of gas).




Basic assumptions

Unless otherwise specified, we will assume the following:
@) Ideal gas: reasonable assumption for most regions of the star.

PVimol = ZT, where Vi, is the molar volume (volume occupied by 1 mole of gas).

kT
= p = p—, with pmp the mean molecular weight (mass of a “typical” particle in mp).
Hmp




Basic assumptions

Unless otherwise specified, we will assume the following:
@) Ideal gas: reasonable assumption for most regions of the star.
PVimol = ZT, where Vi, is the molar volume (volume occupied by 1 mole of gas).

kT . . o s .
= p = p—, with pmp the mean molecular weight (mass of a “typical” particle in mp).
Hmp

GM
R2

® Hydrostatic equilibrium: Vp = —pg, where g =




Basic assumptions

Unless otherwise specified, we will assume the following:
@) Ideal gas: reasonable assumption for most regions of the star.

PVimol = ZT, where Vi, is the molar volume (volume occupied by 1 mole of gas).
kT . o o

= p = p—, with pmp the mean molecular weight (mass of a “typical” particle in mp).
Hmp

GM

2

®) Plane-parallel atmosphere: the piece of atmosphere under consideration is a flat “slab”,
such that the physical quantities are only a function of height from the surface of the slab:
f(r) — f(2).
Only valid if scale height of atmosphere H << R.
Not valid in red giants! (“photosphere” difficult to define here!)

® Hydrostatic equilibrium: Vp = —pg, where g =

—
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lllustration: extent of the solar photosphere

Chromosphere

> Photosphere

1000

Height (km)

Sub-photosphere

Over the photospheric region, p changes by ~ 102, T
changes by 2x = assume T = constant = T.g.

g also changes very slowly, as the enclosed mass is almost
constant and H << R (plane-parallel approx.)

The equation of hydrostatic equilibrium is then

d GM kTog d
ap _ —pg = —p—rs = it BLY (Ideal Gas Law).
dz R2 ump dz
= p(z) = p(z=0) exp {75],
H
kTog R?

with scale height H =

umy GM’
Figure on the bottom left confirms this exponential decay.

Substitute for R using the Stefan-Boltzmann Law,

= ——— ——— &~ 174 km, with p = 1.
GMpump, Amo T3,

Tem and g have the dominant effect on nature of the
atmosphere.
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Chemical composition

The spectral features also depend on the chemical composition of the star.

Metallicity: mass fraction of elements heavier than He
(“metals”).

Globular clusters

Credit: user:RJHall CC BY-SA 3.0,
via Wikimedia Commons.
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The spectral features also depend on the chemical composition of the star.

Metallicity: mass fraction of elements heavier than He
(“metals”).

Hydrogen: X ~ 0.7

Helium: Y =~ 0.29 = by number, yy. ~ 0.08
Everything else: Z ~ 0.01

A
CNO Z ~ 104,12 + log (ﬁ) ~ 8.0),
Fe Z ~10°°

Globular clusters
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via Wikimedia Commons.

—
"



https://creativecommons.org/licenses/by-sa/3.0/deed.en

Chemical composition

The spectral features also depend on the chemical composition of the star.

Metallicity: mass fraction of elements heavier than He
(“metals”).

Hydrogen: X ~ 0.7

Helium: Y =~ 0.29 = by number, yy. ~ 0.08

Globular clusters Everything else: Z =~ 0.01

A
CNO Z ~ 104,12 + log (ﬁ) ~ 8.0),
Fe Z ~10°°

MW stars in two populations:

Population I: restricted to the disk. Higher Z. Sun-like
and higher. Z ~ 0.019

Population |l: Galactic halo. Lower Z. Sun-like and
higher. Z5 =~ 0.019

Population Ill: “Primordial”, very low Z.

Credit: user:RJHall CC BY-SA 3.0,
via Wikimedia Commons.
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Chemical composition

The spectral features also depend on the chemical composition of the star.

Metallicity: mass fraction of elements heavier than He
(“metals”).

Hydrogen: X ~ 0.7

Helium: Y =~ 0.29 = by number, yy. ~ 0.08

Globular clusters Everything else: Z =~ 0.01

A
CNO Z ~ 104,12 + log (ﬁ) ~ 8.0),
Fe Z ~10°°

MW stars in two populations:

Population I: restricted to the disk. Higher Z. Sun-like
and higher. Z ~ 0.019

Population |l: Galactic halo. Lower Z. Sun-like and
higher. Z5 =~ 0.019

Population Ill: “Primordial”, very low Z.

Chemical composition also evolves as nucleosynthetic
products are brought out to the surface (convection,
rotation).
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Velocity and speed distribution

In thermal equilibrium at temperature T, the velocities of gas particles of mass m are
distributed according to a Gaussian distribution:

3/2 2
dP(v) = fraction of particles in with velocities in (v,v + dv) = ( o ) exp |: me :|dv.

2mkT T 2kT
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. . Lo S m \3/2 mv’
dP(v) = fraction of particles in with velocities in (v,v + dv) = (ﬁ) exp |:— 2kT:| dv.

Spectral line with natural frequency vg from source with radial velocity vg Doppler shifted by
Av UR
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Thermal distribution of vg: dP(vg) = (%) / exp —2ky$:| dwR.
yiy

= thermal component to Doppler broadening of spectral lines.
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In thermal equilibrium at temperature T, the velocities of gas particles of mass m are
distributed according to a Gaussian distribution:

. e o m \3/2 mo?
dP(v) = fraction of particles in with velocities in (v,v + dv) = (M) exp |:— 2kT:| dv.

Spectral line with natural frequency vg from source with radial velocity vg Doppler shifted by
Av UR

0] Cc
3/2 mo3
Thermal distribution of vg: dP(vg) = (%) / exp —2ky$:| dwR.
yiy

= thermal component to Doppler broadening of spectral lines.

The volume element dv = dvcdv,dv, (Cartesian) and = 47v?dv (Spherical).
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Velocity and speed distribution

In thermal equilibrium at temperature T, the velocities of gas particles of mass m are

distributed according to a Gaussian distribution:
2

— - dv.
27kT 2kT

3/2
dP(v) = fraction of particles in with velocities in (v,v + dv) = ( m ) exp |: me

Spectral line with natural frequency vg from source with radial velocity vg Doppler shifted by
Av UR

0] Cc
3/2 mo3
Thermal distribution of vg: dP(vg) = (%) / exp —2:_?:| dwR.
yiy

= thermal component to Doppler broadening of spectral lines.

The volume element dv = dvcdv,dv, (Cartesian) and = 47v?dv (Spherical).

The spherical choice gives us the distribution of speeds, the Maxwell-Boltzmann Distribution:

m \3/2 mo? 5
dP(v) = (m) exp {—ﬁ]Mrv do.
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Excitation

Electrons arranged in energy levels n=1,2,3,---
Excitation energy = AE, —n, = Eny, — Eny

= Energy liberated upon de-excitation.

(15%) lonisation potential = AE, 1 =/

= Eground state = —/ w.r.t. “free” electron. E, <0 for
n=1,2,3,--- (bound states).

Collisional excitation: At T # 0, always some atoms in

excited states.

N, E
Fraction in state n: — = = exp |——|.
N u(T) kT

N = total atoms, g, = statistical weight of nth level,

u(T) = partition function = Zgj exp [
Jj=1

)
Relative fraction in levels m and n (m < n):

N,, _ &n |: AEqm :|
Z—exp | —————
Nm 8m

For hydrogen atom, g, = 2n?.




Excitation - transitions in hydrogen-like atoms

For light H-like (one-electron) atoms (H, He™),
2

V4
Bohr model: E, = —13.6—2 A
n

410 nm | Balmer serie:

Credit: user:OrangeDog CC BY-SA 2.5,
via Wikimedia Commons.
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Excitation - transitions in hydrogen-like atoms

For light H-like (one-electron) atoms (H, He™),

Z2
Bohr model: E, = —13.6—2 A
n
1 1
= AE,,n =136 (—2 — —2) eV.
g 5

Credit: user:OrangeDog CC BY-SA 2.5,
via Wikimedia Commons.
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Excitation - transitions in hydrogen-like atoms

For light H-like (one-electron) atoms (H, He™),

Z2
Bohr model: E, = —13.6—2 A
n
1 1
= AE,,n =136 (—2 — —2) eV.
g 5

Transitions of H atom split into series based on nj:
ny = 1: Lyman series, n; = 2: Balmer, n; = 3: Paschen,
ny = 4: Brackett, n; = 5: Pfund, n; = 6: Humphreys.

Balmer serie

Credit: user:OrangeDog CC BY-SA 2.5,
via Wikimedia Commons.
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Excitation - transitions in hydrogen-like atoms

For light H-like (one-electron) atoms (H, He™),

Z2
Bohr model: E, = —13.6—2 A
n
1 1
= AE,,n =136 (—2 — —2) eV.
g 5

| Transitions of H atom split into series based on nj:
Balmer serie: .
410 nm | B 1, = 1: Lyman series, n; = 2: Balmer, n; = 3: Paschen,

ny = 4: Brackett, n; = 5: Pfund, n; = 6: Humphreys.

np =2 — n; = 1: Lyman-a, np =3 — n; = 1: Lyman-3,
etc.

Credit: user:OrangeDog CC BY-SA 2.5,
via Wikimedia Commons.



https://creativecommons.org/licenses/by/2.5/deed.en

Excitation - transitions in hydrogen-like atoms

For light H-like (one-electron) atoms (H, He™),

Z2
Bohr model: E, = —13.6—2 A
n
1 1
= AE,,n =136 (—2 — —2) eV.
g 5

“ Transitions of H atom split into series based on nj:

Balr .
“UUNRN 11 = 1: Lyman series, n; = 2: Balmer, n; = 3: Paschen,
ny = 4: Brackett, n; = 5: Pfund, n; = 6: Humphreys.

np =2 — n; = 1: Lyman-a, np =3 — n; = 1: Lyman-3,
etc.

Credit: user:OrangeDog CC BY-SA 2.5,
via Wikimedia Commons.

n, =3 — n; = 2: Balmer-a, also “H-a", etc.
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Excitation - transitions in hydrogen-like atoms

For light H-like (one-electron) atoms (H, He™),

Z2
Bohr model: E, = —13.6—2 A
n
1 1
= AE,,n =136 (—2 — —2) eV.
g 5

Transitions of H atom split into series based on nj:
ny = 1: Lyman series, n; = 2: Balmer, n; = 3: Paschen,
ny = 4: Brackett, n; = 5: Pfund, n; = 6: Humphreys.

Balmer serie

np =2 — n; = 1: Lyman-a, np =3 — n; = 1: Lyman-3,
etc.

Credit: user:OrangeDog CC BY-SA 2.5,
via Wikimedia Commons.

n, =3 — n; = 2: Balmer-a, also “H-a", etc.

Lyman series in UV/X-rays, Balmer in optical and
near-IR, others at longer wavelengths.
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