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Mechanisms for (de)populating energy levels

Interaction with photons (radiative) or other atoms/ions (collisional).

Excitation: radiative (Einstein B coefficient) or collisional.

De-excitation: radiative (spontaneous – Einstein A coefficient/stimulated – Einstein B
coefficient) or collisional.

Elastic collisions (total KE is conserved) → Boltzmann Distribution (of velocities) → thermal
equilibrium.

Collisional (de)excitations are examples of inelastic collisions: some of the initial KE is either
used to excite atom to higher level, or is converted into radiation upon de-excitation.

High density → collisions dominate. Low density → (de)excitations disrupt thermal equilibrium.
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Ionisation

Neutral (“Hi”) → ionised (“Hii”) hydrogen
⇒ # particles double at fixed T , p doubles, µ halves (electrons have no mass).

Effect on spectra:

Hi: discrete energy levels, produces line features in spectrum.
In general, neutral atoms and ions contribute to line opacity.

Ions also contribute to continuum opacity (ionisation and KE to freed electrons)
Proton: no absorption (except free-free with electron).
Hydride (H−): electronic structure like He, with 1/4 the nuclear mass. Optical through NIR
absorption.

Stellar Atmospheres: Lecture 3, 2020.04.20

Prof. Sundar Srinivasan - IRyA/UNAM 3



Ionisation

Neutral (“Hi”) → ionised (“Hii”) hydrogen
⇒ # particles double at fixed T , p doubles, µ halves (electrons have no mass).

Effect on spectra:

Hi: discrete energy levels, produces line features in spectrum.
In general, neutral atoms and ions contribute to line opacity.

Ions also contribute to continuum opacity (ionisation and KE to freed electrons)
Proton: no absorption (except free-free with electron).
Hydride (H−): electronic structure like He, with 1/4 the nuclear mass. Optical through NIR
absorption.

Stellar Atmospheres: Lecture 3, 2020.04.20

Prof. Sundar Srinivasan - IRyA/UNAM 3



Ionisation

Neutral (“Hi”) → ionised (“Hii”) hydrogen
⇒ # particles double at fixed T , p doubles, µ halves (electrons have no mass).

Effect on spectra:

Hi: discrete energy levels, produces line features in spectrum.
In general, neutral atoms and ions contribute to line opacity.

Ions also contribute to continuum opacity (ionisation and KE to freed electrons)
Proton: no absorption (except free-free with electron).
Hydride (H−): electronic structure like He, with 1/4 the nuclear mass. Optical through NIR
absorption.

Stellar Atmospheres: Lecture 3, 2020.04.20

Prof. Sundar Srinivasan - IRyA/UNAM 3



Excitation and ionisation

Need thermal-equilibrium distribution of atoms among various excitation/ionisation states.

P(system in state with energy E) ∝ prob. of having energy E × # states with energy E .

Determining the function P(E):
– Maximise the entropy subject to normalisation and fixed average energy.
– Form of the entropy function gives exponential dependence on energy.

Multi-component systems (e.g., ions + electrons) must satisfy P(E) = P(E1) · P(E2) · · ·
Exponential dependence is the only possibility.

– Average energy constraint → dependence is negative exp. with energy in units of kT .
– Normalisation constraint → partition function (next slide).

# states with energy E : depends on whether the accessible levels are
(1) discrete (e.g., bound electronic states in H atom):

use g(E), the degeneracy/multiplicity/occupation number for that energy.
(2) continuous (e.g., free electrons):

estimate fraction of phase space volume occupied by states with energy E .
Typically, the differential volume of phase space

=
d3x d3p

h3
=

dV × 4πp2dp

h3
=

m3dV × 4πv2dv
h3

.

Excitation: bound-bound transitions ⇒ Boltzmann Distribution.
Ionisation: bound-free transitions ⇒ Saha Equation.
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The partition function

The distribution of prob. for states in thermal equilibrium at temperature T is the Boltzmann
Distribution:

P(Ei ) =
gi

Z
exp

[
−

Ei

kT

]
(discrete), or P(E)dE =

g(E)

Z
exp

[
−

E

kT

]
dE (continuous),

Here, Z is a constant of normalisation called the partition function:

Z =
∑

i

gi exp

[
−

Ei

kT

]
(discrete), or Z =

∫
g(E) exp

[
−

E

kT

]
dE (continuous)

We will represent Z with u(T ) to explicitly note its dependence on temperature.

For the Bohr model (gm = 2m2,Em ∝ −1/m2), Z , summed over m = 1 to ∞, diverges!!
This is because an infinite volume is assumed for the single atom.

In practice, the higher levels are depopulated via collisions and interactions with charged species
(low Debye Length).
Solar core: λD ∼ Bohr radius, n ∼ 1031 m−3, – electrons basically unbound.
Solar surface: n ∼ 106 m−3,mmax ∼ 104.
Increasing densities in general will make it easier to free electrons from their orbits – reduction
in ionisation potential. This pressure ionisation is common in stellar cores.
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The Saha Equation - I

Ionisation rate ∝ IPi (ionisation potential) and T . Recombination rate ∝ T and ne (or pe).

Consider the general case:
Initial: atom in ionisation state i , excitation state j .
Final: atom in ionisation state i + 1, excitation state m, and

free electron with KE =
p2

2me
.

Total energy change: ∆E = IPi+1 + Ei+1,m − Ei,j + KE .

ginitial = gi,j . Single value since discrete energy level.
After ionisation, atom is still in discrete energy state but electron isn’t.

gfinal = gi+1,m · ge , where ge is now the density of states: ge =
8Vπp2dp

h3
=

8πp2dp

neh3
.

⇒
dNi+1,m

Ni,j
=

2gi+1,m

gi,j
exp

[
−
IPi+1

kT

]
exp

[
−

(Ei+1,m − Ei,j )

kT

]
4πp2

neh3
exp

[
−

1

2

p2

mekT

]
dp,

where dNi+1,m is the number of atoms in ionisation state i + 1 and excitation state m that have
lost electrons with momenta in the range p, p + dp.
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ginitial = gi,j . Single value since discrete energy level.
After ionisation, atom is still in discrete energy state but electron isn’t.

gfinal = gi+1,m · ge , where ge is now the density of states: ge =
8Vπp2dp
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=

8πp2dp

neh3
.
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dNi+1,m

Ni,j
=
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−
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neh3
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1

2

p2

mekT

]
dp,

where dNi+1,m is the number of atoms in ionisation state i + 1 and excitation state m that have
lost electrons with momenta in the range p, p + dp.
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The Saha Equation - II

To integrate over the momenta, we set ζ =
p

√
2mekT

, and note that

∞∫
0

ζ2e−ζ
2
dζ =

√
π

4
:

Ni+1,m

Ni,j
=

2gi+1,m

gi,j ne
exp

[
−
IPi+1

kT

]
exp

[
−

(Ei+1,m − Ei,j )

kT

]
4π

h3
(2mekT )3/2

√
π

4

=
2gi+1,m

gi,j ne
exp

[
−
IPi+1

kT

]
exp

[
−

(Ei+1,m − Ei,j )

kT

](
2πmekT

h2

)3/2

Simplify: sum over all possible excitation states, get the relative populations of successive
ionisation states regardless of the excitation state.

Note:

∞∑
m=1

Ni,j ∝
∞∑
m=1

gi,j exp

[
−
Ei,j

kT

]
≡ ui (T ), the partition function for ionisation state i .

Ni+1 ne

Ni
= 2

ui+1(T )

ui (T )
exp

[
−
IPi+1

kT

](
2πmekT

h2

)3/2

(we also moved ne to the LHS).

Saha Equation in terms of the final electron density ne . Use pe = nekT to get pressure version:

Ni+1 pe

Ni
= 2

ui+1(T )

ui (T )
exp

[
−
IPi+1

kT

](
2πme

h2

)3/2

(kT )5/2
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Application: the Balmer Thermometer

Apply the Saha equation to Hi and Hii:

gHI,1 = 2, and gHII (just a proton). Ratio of partition
functions is then 1/2, and

NHII ne

NHI
=

(
2πmekT

h2

)3/2

exp

[
−
IP1

kT

]
.

For ne = 1020 m−3, this ratio ∼ 1 for T = 104 K.
Beyond this, fewer atoms are available for excitation.

At very low T : very few atoms excitable. T & 5000 K
required for Balmer lines.

At very high T : most atoms ionised. T . 20000 K
required for Balmer lines.

Balmer lines have peak intensity around T = 104K.
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Spectroscopic classification of stars – I

Elements of a classification scheme

1 Selection criteria – the features (relative intensities of lines/bands, etc.) used in ordering
the spectra

2 Standard stars – order spectra using the above criteria, arrange the spectra using
numbers/symbols to describe the positions of stars in the sequence, then identify good
representative stars for each type

3 Calibration – connect the spectral types to physical characteristics of the stars

(Keenan, from Stars and Stellar Systems III: Basic Astronomical Data 3rd ed., 1969)

Originally, classification was done on a completely empirical basis – organised by intensity of
hydrogen lines w.r.t. other lines. Reordered when relation to physical parameters became clearer.

Stellar Atmospheres: Lecture 3, 2020.04.20

Prof. Sundar Srinivasan - IRyA/UNAM 9



Spectroscopic classification of stars – I

Elements of a classification scheme

1 Selection criteria – the features (relative intensities of lines/bands, etc.) used in ordering
the spectra

2 Standard stars – order spectra using the above criteria, arrange the spectra using
numbers/symbols to describe the positions of stars in the sequence, then identify good
representative stars for each type

3 Calibration – connect the spectral types to physical characteristics of the stars

(Keenan, from Stars and Stellar Systems III: Basic Astronomical Data 3rd ed., 1969)

Originally, classification was done on a completely empirical basis – organised by intensity of
hydrogen lines w.r.t. other lines. Reordered when relation to physical parameters became clearer.

Stellar Atmospheres: Lecture 3, 2020.04.20

Prof. Sundar Srinivasan - IRyA/UNAM 9



Spectroscopic classification of stars – I

Elements of a classification scheme

1 Selection criteria – the features (relative intensities of lines/bands, etc.) used in ordering
the spectra

2 Standard stars – order spectra using the above criteria, arrange the spectra using
numbers/symbols to describe the positions of stars in the sequence, then identify good
representative stars for each type

3 Calibration – connect the spectral types to physical characteristics of the stars

(Keenan, from Stars and Stellar Systems III: Basic Astronomical Data 3rd ed., 1969)

Originally, classification was done on a completely empirical basis – organised by intensity of
hydrogen lines w.r.t. other lines. Reordered when relation to physical parameters became clearer.

Stellar Atmospheres: Lecture 3, 2020.04.20

Prof. Sundar Srinivasan - IRyA/UNAM 9



Spectroscopic classification of stars – I

Elements of a classification scheme

1 Selection criteria – the features (relative intensities of lines/bands, etc.) used in ordering
the spectra

2 Standard stars – order spectra using the above criteria, arrange the spectra using
numbers/symbols to describe the positions of stars in the sequence, then identify good
representative stars for each type

3 Calibration – connect the spectral types to physical characteristics of the stars

(Keenan, from Stars and Stellar Systems III: Basic Astronomical Data 3rd ed., 1969)

Originally, classification was done on a completely empirical basis – organised by intensity of
hydrogen lines w.r.t. other lines. Reordered when relation to physical parameters became clearer.

Stellar Atmospheres: Lecture 3, 2020.04.20

Prof. Sundar Srinivasan - IRyA/UNAM 9



Spectroscopic classification of stars – II
Originally assigned alphabet designations after
organising by strength of H lines.

Rearranged once it became clear that line
strengths increased then decreased with
temperature.
Temperature sequence:

C[R/N]
O B A F G K M L T

S

credit: W. Henney from Ch. 1 of Gray
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Spectroscopic classification of stars – III

Luminosity class
In solar units, L = R2T 4

eff .

Teff known from spectral line ratios ⇒ L ∝ R2.
⇒ luminosity class = size class.

In terms of surface gravity, L ∝ R2 ∝ Mg−1.

Use mass-luminosity relation:
L ∝ M−α, α ≈ 3− 3.5 for “normal” stars (no
red giants!)

⇒ L ∝ g

α

1− α ,

and thus related to pressure (hydrostatic
equilibrium).

Pressure classification = luminosity
classification.

(Wikipedia/

https://www.cfa.harvard.edu/∼pberlind/atlas/htmls/note.html)
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The Hertzsprung-Russell Diagram

A plot of L vs Teff .

Observational version: L→ (absolute)
magnitude, Teff → colour.

Important features:
Main sequence – hydrogen-burning
cores.
Red and asymptotic giant branch –
shell hydrogen- and helium-burning.
Supergiants – massive, short-lived.
White dwarfs – end products of giants.

Credit: Bennett et al., “The Cosmic Perspective”, 8 ed.
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