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Excitation: radiative (Einstein B coefficient) or collisional.

De-excitation: radiative (spontaneous — Einstein A coefficient/stimulated — Einstein B
coefficient) or collisional.
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Interaction with photons (radiative) or other atoms/ions (collisional).

Excitation: radiative (Einstein B coefficient) or collisional.

De-excitation: radiative (spontaneous — Einstein A coefficient/stimulated — Einstein B
coefficient) or collisional.

Elastic collisions (total KE is conserved) — Boltzmann Distribution (of velocities) — thermal
equilibrium.

Collisional (de)excitations are examples of inelastic collisions: some of the initial KE is either
used to excite atom to higher level, or is converted into radiation upon de-excitation.

High density — collisions dominate. Low density — (de)excitations disrupt thermal equilibrium.




lonisation

Neutral (“HI") — ionised (“H1I") hydrogen
= # particles double at fixed T, p doubles, p halves (electrons have no mass).




lonisation

Neutral (“HI") — ionised (“H1I") hydrogen
= # particles double at fixed T, p doubles, u halves (electrons have no mass).

Effect on spectra:

Hr: discrete energy levels, produces line features in spectrum.
In general, neutral atoms and ions contribute to line opacity.




lonisation

Neutral (“HI") — ionised (“H1I") hydrogen
= # particles double at fixed T, p doubles, u halves (electrons have no mass).

Effect on spectra:
Hr: discrete energy levels, produces line features in spectrum.
In general, neutral atoms and ions contribute to line opacity.

lons also contribute to continuum opacity (ionisation and KE to freed electrons)

Proton: no absorption (except free-free with electron).

Hydride (H™): electronic structure like He, with 1/4 the nuclear mass. Optical through NIR
absorption.
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Excitation and ionisation

Need thermal-equilibrium distribution of atoms among various excitation/ionisation states.
P(system in state with energy E) X #t states with energy E.

— Maximise the entropy subject to normalisation and fixed average energy.
— Form of the entropy function gives exponential dependence on energy.

Multi-component systems (e.g., ions + electrons) must satisfy P(E) = P(Ey) - P(Ep) - - -

Exponential dependence is the only possibility.
— Average energy constraint — dependence is negative exp. with energy in units of kT.
— Normalisation constraint — partition function (next slide).

# states with energy E: depends on whether the accessible levels are
(1) discrete (e.g., bound electronic states in H atom):
use g(E), the degeneracy/multiplicity/occupation number for that energy.
(2) continuous (e.g., free electrons):
estimate fraction of phase space volume occupied by states with energy E.
Typically, the differential volume of phase space
dBx d®p  dV x4np?dp  midV x 4wvPdu

Excitation: bound-bound transitions = Boltzmann Distribution.
lonisation: bound-free transitions = Saha Equation.
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The partition function

The distribution of prob. for states in thermal equilibrium at temperature T is the Boltzmann
Distribution:

i E; E E
P(E) = %exp [—ﬁ} (discrete), or P(E)dE = % exp {—E] dE (continuous),
Here, Z is a constant of normalisation called the partition function:

E; . E .
Z= E giexp [—ﬁ} (discrete), or Z = /g(E) exp [—ﬁ} dE (continuous)

We will represent Z with u(T) to explicitly note its dependence on temperature.

For the Bohr model (gm = 2m?, Em —1/m2), Z, summed over m = 1 to oo, diverges!!
This is because an infinite volume is assumed for the single atom.

In practice, the higher levels are depopulated via collisions and interactions with charged species
(low Debye Length).

Solar core: Ap ~ Bohr radius, n ~ 103! m
Solar surface: n ~ 106 m=3, myax ~ 10%.
Increasing densities in general will make it easier to free electrons from their orbits — reduction
in ionisation potential. This pressure ionisation is common in stellar cores.
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3, — electrons basically unbound.
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lonisation rate o IP; (ionisation potential) and T. Recombination rate oc T and ne (or pe).

Consider the general case:
Initial: atom in ionisation state /, excitation state j.
Final: atom in ionisation state i/ + 1, excitation state m, and
P2
2me
Total energy change: AE = IPj 1 + Ejy1,m — E;j + KE.

free electron with KE =

Zinitial = &i,j- Single value since discrete energy level.
After ionisation, atom is still in discrete energy state but electron isn't.
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The Saha Equation - |

lonisation rate o IP; (ionisation potential) and T. Recombination rate oc T and ne (or pe).

Consider the general case:
Initial: atom in ionisation state /, excitation state j.
Final: atom in ionisation state i/ + 1, excitation state m, and
P2
2me
Total energy change: AE = IPj 1 + Ejy1,m — E;j + KE.

free electron with KE =

Zinitial = &i,j- Single value since discrete energy level.
After ionisation, atom is still in discrete energy state but electron isn't.

8Vrp?dp  8mp?d
gfinal = &i+1,m - 8e, Where ge is now the density of states: ge = AR L

B nehd
o dNisim _ 2811m oxp {_ IPi+1:| exp [_(Ei+l,m - Ei,j)] 47p? o {_} P’ :|dp,
Nij &ij kT KT neh3 2 mekT

where dN; 1 mn is the number of atoms in ionisation state i + 1 and excitation state m that have
lost electrons with momenta in the range p, p + dp.
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, and note that /C2e*<2dg = ?;
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To integrate over the momenta, we set ( =
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. __p VT
To integrate over the momenta, we set ( = ok i

Nitvim _ 28i41,m exp [_ IZi;l] exp [_ (Ei+1,:T— Ei,j)} %(2mekT)3/2?

, and note that /C2e’<2d§ =
0
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The Saha Equation - 1l

oo
. p B, = VT
To integrate over the momenta, we set { = ————, and note that / e d¢{ = —:
5 = amekT Cemdi=-
Nitim _ 28it1,m exp [_ IPi+1] oxp [_ (Eis1,m — ,J)} AT (2mekT)3/2 VT
Ni,j 8i,j Ne kT kT h3 4

28i41,m 1P (E,+1m— Ei)) 27rm kT\3/2
exp |— KT exp

8i,j Ne




The Saha Equation - 1l
To integrate over the momenta, we set ( = - and note that /OOC267<2 d¢ = ﬁ:
' V2mekT' ) 4

] =0 [_ (Eiv1,m — Ei,j):| 41(2mekT)3/2?

Niti,m _ 2gi11,m o [_ IPiyq
Ni,j 8i,j Ne kT kT h3
_ 28iy1,m IPi{1 (Eix1,m — Eij)] [ 2mmekT\*/?
= exp | — exp |—
kT kT h2

8i,j Ne

Simplify: sum over all possible excitation states, get the relative populations of successive

ionisation states regardless of the excitation state.
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To integrate over the momenta, we set { = ————, and note that e d¢{ = —:
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oo
. p B, = VT
To integrate over the momenta, we set { = ————, and note that e d¢{ = —:
5 = amekT 0/ Cede=-
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ionisation states regardless of the excitation state.

oo o0 E
Note: E N; j o< E 8i,j exp |:—
m=1 m=1

: i| = u;(T), the partition function for ionisation state /.
(T IP; 2mmekT \ 3/2
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)
kT
NI+1 Ne
kT h?
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The Saha Equation - 1l

oo
. P 2 2 VT
To integrate over the momenta, we set { = ————, and note that /C e s d{=—"—:
V2mekT 4
€ 0

Nit1,m _ 2gi+1,m exp [_ IPi+1] exp [_ (Eiv1,m — Ei,j)} 477(2m kT2 VT
- e
4

Ni,j 8i,j Ne kT kT h3
_ 2g,-+1,m | — IP,'+1 = |— (Ei+1,m = E,',j) 2mmekT 3/2
gij Ne kT kT h?

Simplify: sum over all possible excitation states, get the relative populations of successive
ionisation states regardless of the excitation state.

oo o0
Note: E N; ; E gijexp |— Eij
5J v kT

m=1 m=1

N; (T IP; 2mmekT \ 3/2
ELTE g ui+1(T) exp {f 'H} < e ) (we also moved ne to the LHS).

N T (T kT h2

Saha Equation in terms of the final electron density ne. Use pe = nekT to get pressure version:

Ni+1 Pe ui+1( T) N I'Di+1 2Tme 92 5/2
—2 (kT)
N; ui(T) KT 2

—
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i| = u;(T), the partition function for ionisation state /.
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At very low T: very few atoms excitable. T = 5000 K
required for Balmer lines.

At very high T: most atoms ionised. T < 20000 K
required for Balmer lines.
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Apply the Saha equation to Hr and Hi:

gur,1 = 2, and gurr (just a proton). Ratio of partition
functions is then 1/2, and
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At very low T: very few atoms excitable. T = 5000 K
required for Balmer lines.

At very high T: most atoms ionised. T < 20000 K
required for Balmer lines.

Balmer lines have peak intensity around T = 10*K.

—
"



Spectroscopic classification of stars — |

Elements of a classification scheme

(Keenan, from Stars and Stellar Systems IlI: Basic Astronomical Data 3rd ed., 1969)




Spectroscopic classification of stars — |

Elements of a classification scheme

@ Selection criteria — the features (relative intensities of lines/bands, etc.) used in ordering
the spectra

(Keenan, from Stars and Stellar Systems IlI: Basic Astronomical Data 3rd ed., 1969)

—
A



Spectroscopic classification of stars — |

Elements of a classification scheme

@ Selection criteria — the features (relative intensities of lines/bands, etc.) used in ordering
the spectra

@ Standard stars — order spectra using the above criteria, arrange the spectra using
numbers/symbols to describe the positions of stars in the sequence, then identify good
representative stars for each type

®) Calibration — connect the spectral types to physical characteristics of the stars

(Keenan, from Stars and Stellar Systems IlI: Basic Astronomical Data 3rd ed., 1969)

—
A



Spectroscopic classification of stars — |

Elements of a classification scheme

@ Selection criteria — the features (relative intensities of lines/bands, etc.) used in ordering
the spectra

@ Standard stars — order spectra using the above criteria, arrange the spectra using

numbers/symbols to describe the positions of stars in the sequence, then identify good
representative stars for each type

®) Calibration — connect the spectral types to physical characteristics of the stars
(Keenan, from Stars and Stellar Systems IlI: Basic Astronomical Data 3rd ed., 1969)

Originally, classification was done on a completely empirical basis — organised by intensity of
hydrogen lines w.r.t. other lines. Reordered when relation to physical parameters became clearer.
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Spectroscopic classification of stars — |l

Originally assigned alphabet designations after

organising by strength of H lines.
Rearranged once it became clear that line
strengths increased then decreased with
temperature.
Temperature sequence:

C[R/N]
OBAFGKM LT

S

Eartlles @preqtes He /H
\ O&ﬁiﬁKﬁffler

t\bﬁa*(tﬁ

@

Table 1.1. Spectral classification.

Temperature criteria
BO He 1 A4471/He 11 A454] increasing with type
He 1+ He I1 A4026/He I A4200 increasing with type
BO-A0 H lines increase with type
He 1 lines reach maximum at B2
Ca I K line becomes visible at B§
Ca Il K/H, increasing with type
Neutral metals become stronger
G band visible starting at F2
H lines decrease
Neutral metals increase
G band strengthens
band changes appearance
a 1 A4226 increases rapidly
TiO starts near MO in dwarfs, K$ in giants

Luminosity criteria
09-A5

H and He lines weaken with increasing luminosity
Fe II becomes prominent in A0-AS
FO-K0 Blend AA4172-9 increases with luminosity (early F)
Sr IT A4077 increases with luminosity
CN A4200 increases with luminosity
K0-M6 CN A4200 increases with luminosity
Sr 11 increases with luminosity
Suffix notation
rmmnn lines are present
e 11 A468! in emission; mostly for O stars
in hot stars

nebulous!
ctrum is abnormal
Queer; unusual emission; evolved from Q novae designation (archaic)
nes are sharp, usually for early-type stars with low rotation
pectrum changes with time
et bands present (archaic)
Old prefix notation
¢ for supergiants; g for giants; d for dwarfs

from Ch. 1 of Gray




Spectroscopic classification of stars — IlI

Luminosity class

In solar units, L = R? Tgﬂ.

Tot known from spectral line ratios = L oc R2.
= luminosity class = size class.

(Wikipedia/
https://www.cfa.harvard.edu/~pberlind/atlas/htmls/note.html)
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Spectroscopic classification of stars — IlI

Luminosity class

In solar units, L = R? Tgﬂ.

Tot known from spectral line ratios = L oc R2.
= luminosity class = size class.

In terms of surface gravity, L oc R? oc Mg~1.

Use mass-luminosity relation:
Lox M~ a~ 3 — 3.5 for “normal” stars (no
red giants!)

«

échgl—a,

and thus related to pressure (hydrostatic (Wikipedia/
equilibrium). https://www.cfa.harvard.edu/~pberlind/atlas/htmls/note.html)
Pressure classification = luminosity

classification.




Spectroscopic classification of stars — IlI

Luminosity class
In solar units, L = R? TSH.
Terr known from spectral line ratios = L oc R2.

Yerkes luminosity classes

= |um|n05|ty class = size class. Luminosity class Description Examples
0orlat hypergiants or extremely luminous supergiants  Cygnus OB2#12 — B3-4la+ [18]
In terms of surface gravity, L o< R o« Mg ™. luminous superglarts
. ; B intermediate-size luminous supergiants
Use mass-luminosity relation: less luminous supergiants
Lox M~ o= 3—3.5 for “normal” stars (no bright gants
. 1 normal giants
red glants') subgiants a e — B0.5IVpe 241
(67 main-sequence stars (dwarfs) Achernar — B6Vep [2
1 —« sd (prefix) or VI subdwarfs HD 149382 — sdB5 or B5VI 29}
= L x g U D (prefix) or VIl | white dwarfs [° van Maanen 2 — DZ8 [
and thus related to pressure (hydrostatic (Wikipedia/
equ'l'bn“”")- https://www.cfa.harvard.edu/~pberlind/atlas/htmls/note.html)

Pressure classification = luminosity
classification.
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The Hertzsprung-Russell Diagram

A plot of L vs Teg.

Observational version: L — (absolute)
magnitude, T.g — colour.

Important features:

Main sequence — hydrogen-burning
cores.

Red and asymptotic giant branch —
shell hydrogen- and helium-burning.
Supergiants — massive, short-lived.

White dwarfs — end products of giants.
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