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Exam #1: Monday, 2020-05-04

Feel free to use your notes, books (I will supply the relevant chapters), and the internet.

Starts: 9 AM on Monday, 2020-05-04.
Due: 5 PM on Tuesday, 2020-05-05.

All scripts must be emailed in .py or .nb format, not as a PDF.




Thermodynamic Equilibrium (TDE)

Enables us to define a temperature for the system. T is independent of location or time in TDE.
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®) Kinetic TDE: regulated by collisions. Velocity distribution is

Maxwellian. We can define a kinetic temperature using the
average, rms, or most probable velocities.
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Example: vy, =

®) Excitation TDE: regulated by collisions/radiation. Ratio of

states given by Boltzmann Distribution, which can be used
to define an excitation temperature.
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Example: — = = -
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® Radiative TDE: regulated by emission/absorption/scattering.

Intensity given by Planck Law, bolometric intensity given by
Stefan-Boltzmann Law.

S, = B, for all v. Can define radiation temperature from
either Stefan-Boltzmann Law or from Planck Law. From
approximations to Planck Law: also called Wien temp. or
Rayleigh-Jeans temp.

Enables us to define a temperature for the system. T is independent of location or time in TDE.

Planck/
Stefan-Boltzmann

X

Maxwellian Boltzmann

Adapted from Aaron Parson’s
YouTube clips here and here.
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Local Thermodynamic Equilibrium (LTE)

“Local” in spatial and spectral sense. T still independent of time, but may vary with location in
medium and with frequency.

For radiation, LTE = S, = B, at some frequency v. At this v, we can define T,,4 from the

Planck Law:
2hu3 1
5,2
c v
exp —
[kTrad]

In LTE, Tex = Txin = Trad-
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Radiative transfer

Sources:

Hubeny & Mihalas, chapters 3 and 11
Rybicki & Lightman, chapter 1

Aaron Parsons’ lectures on YouTube.



https://www.youtube.com/user/AaronRobertParsons
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Radiative transfer

Fundamental quantity that describes energy transfer in radiation: specific intensity (spectral
radiance, brightness).

Power per unit frequency per unit area per unit solid angle
passing through a surface element dS = dS § in a direction fi.
The total energy passing through the surface element is then
dE = I(r, t;f,v) (- dS) dQ dv dt

I(r, t;fi,v) is a 7-dimensional distribution function
(8 variables, one constraint because fi is a unit vector).

The intensity changes due to

@ Aborption (photon destruction)
Described by absorption coefficient o, (fractional loss in intensity per unit path length),
opacity k. (fractional loss per unit mass of material with unit cross-sectional area).

® Emission (photon creation)
Described by emission coefficient j,, (increase in intensity per unit path length).

® Scattering (photon redistribution) (v, ) — (v/, /')
Described by scattering cross section o, (i) (probability of scattering in units of area).

Absorption + scattering = attenuation or extinction.
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Invariance of intensity along line of sight

The specific intensity is intrinsic to the source and independent of distance along line of sight.

Consider two infinitesimal areas perpendicular to a ray n.

If there is no absorption, emission, or scattering, the total
energy passing through the areas should be equal.

dE = lu,l dA; dQQ; dt dv = IV’2 dA> dQ dt dv
The solid angles are dQ2; = dA;/r? for j = 1,2

dA; dA; dt dv | dA; dA; dt dv

= Iu,l =z = 2

r2

or Iu.l - I1/,2-

dl,

dr

scattering, d—u is given by the radiative transfer equation.
r

—
"

Thus, = 0 (no absorption, emission, scattering). In the presence of absorption, emission, or
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The radiative transfer (RT) equation

The change in intensity due to a combination of absorption, emission, and scattering is
encapsulated by the radiative transfer equation.

In the steady state (/, constant with time),

dl . N .
d—: = —a®* I, + j,, where the extinction coefficient aS** = 5% 4 a2bs,
For now, we ignore scattering and use o, to mean absorption only.
1 di, dl J
— =L = +ZL=-1+S
oy ds dr, ay

S, depends only on the material’s properties and is called the source function.

Ty is the optical depth (= fractional change in intensity for pure absorption). Measured along
the direction of propagation (from source to observer).

s
For arbitrary s, 7(s0,5) = /u,,(s') ds’, with sp > s. Note that 7(sp,s0) = 0.

S0

The radiative transfer equation is highly nonlinear. Simplifying assumptions used for some
standard solutions.
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For pure emission, o, = 0. We write the RT equation in the spatial gradient form:
S

d, . .
Z = = () = h(s0) + /Ju(s/) ds’ .
S0

For pure absorption,
% =—ay b, = I,(s) = L(s0) exp [—/a,,(s') ds':| = I, (sp) e~ v (%0%),
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RT equation: solution for pure emission/absorption

For pure emission, o, = 0. We write the RT equation in the spatial gradient form:
S

d, . .
Z = = () = h(s0) + /Ju(s/) ds’ .

sp

For pure absorption,

dh. _ —ay b, = 1,(s) = lL,(s0) exp [—/a,,(s') ds':| = I, (sp) e~ v (%0%),

s

ds

S0

The optical depth is thus the fractional reduction in intensity in the pure-absorption case.

7 < 1: “optically thin” or “transparent” material. 7 > 1: “optically thick” or “opaque” material.

—
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Poll: optical depth at the photosphere
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dl
In terms of the optical depth, 4 Y — I, +S,,ordl, + l,dr, = S,.
Ty

Multiply both sides by e™ and integrate from 7, (sp, sp) = 0 to 7. (so, s) (called 7, for brevity):

integrated source + abs.

ure abs.
Ty p

7 ’_A_\ ¥ 7
e™ () — €°1,(0) :/e"v Su(r)) drl, = L(7,) = 1,(0) e™ ¥ +/e*<frfu> S, (7)) d7.,
0 0

Special case: source function constant along ray: S,(7;,) = S,
Ty
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0
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dl
In terms of the optical depth, 4 Y — I, +S,,ordl, + l,dr, = S,.
Ty
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RT equation: formal solution (no scattering)

dl
In terms of the optical depth, 4 Y — I, +S,,ordl, + l,dr, = S,.
Ty

Multiply both sides by e™ and integrate from 7, (sp, sp) = 0 to 7. (so, s) (called 7, for brevity):

integrated source + abs.

pure abs.

¥ 7 ’_Aﬁ ¥ 7
e™ () — €°1,(0) :/e"v Su(r)) drl, = L(7,) = 1,(0) e™ ¥ +/e*<frfu> S, (7)) d7.,
0 0

Special case: source function constant along ray: S, (7)) = Sy

Ty

— ly(m) = b (0) e~ +sy/e*<fv*fé> dr!

0
=L0)e ™ +S(1—e"™)=5,+e (L(0)—S5).
= as T, —»> o0, l, — S,.

dl,
At any point on ray, if [, > S, g

< 0so I, | alongray. If I, < Sy, I, 1 along ray.

Ty
Eventually relaxes to S, in either case.
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Thermal equilibrium and LTE

Matter in thermal equilibrium emits thermal radiation. In such a case,
Kirchhoff’s Law

—_——
S, =Bu(T) = ju = aB,(T).

In Local Thermodynamic Equilibrium, Kirchhoff’s Law is valid at the frequency at which LTE
conditions are assumed.

In LTE, Trad = Tkin = Tex-
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Plane-parallel atmospheres

I(r) — 1(z) (for spherical atmospheres, replace z by r).

If plane-parallel assumption holds, the properties must only vary along the vertical direction.
Any changes along the horizontal plane are quickly smoothed out in this scenario.

A ray along direction i makes an angle 6 with the vertical
direction such that cos@ =i -2. Definition: = -2z = cos#.

1
Note that u = cos 6 ranges from -1 to +1, and that /d,u =2
1
Also, dQ2 =sinf df d¢p = —dp do

The spatial dependence is now I(r; fi,v) = I, (p, z), and

d: o1}
ds:f:,ud—;:—aulu—l-ju

We can average over the p dependence to obtain pure functions of v, z.
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Moments of [,

For a function f(u), we can define moments (weighted averages) w.r.t. u such that
1

/ wFf (p)dp

F) = -1 L

47
=3 [ s, where k=0,1,2,+ = = [ ibsyan ()
T
o]

1
[ T
—1

= averaging over u is similar to averaging over solid angle in the plane-parallel approximation.




Moments of [,

For a function f(u), we can define moments (weighted averages) w.r.t. u such that
1

/#kf(ﬂ)dﬂ -
0= =2 [, where k=012, = = [ubsan ()
0

1
fo T
-1
= averaging over u is similar to averaging over solid angle in the plane-parallel approximation.

The first three moments of I, (u) are, therefore,
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Because of (1), J, is the mean intensity. Similarly, H, = 47 F, where F, is the net flux along n,
and At K,

= py, the momentum flux along n.
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