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Review

Photosphere special because in radiative equilibrium (radiative heating rate = radiative cooling
rate, flux conserved).

Aim: solve the radiative transfer equation for a plane-parallel atmosphere to get Iν(z)→
approximate insights on real stellar atmospheres.

Procedure so far: Assumed time independence, plane-parallel atmosphere (spatial dependence
only on z), directional dependence in terms of µ = n̂ · ŝ. Intensity a function of only ν, z, µ.

Moments of intensity w.r.t. µ. Weighted means of Iν(µ) with weights 1, µ, µ2:

I
(0)
ν =

1

2

1∫
−1

Iν(µ)dµ ≡ Jν ; I
(1)
ν =

1

2

1∫
−1

µ Iν(µ)dµ ≡ Hν ; I
(2)
ν =

1

2

1∫
−1

µ2Iν(µ)dµ ≡ Kν .

Since the integral over solid angle is 2π times the integral over µ, we can relate each of these
moments to physical quantities:
4πJν

c
= uν = energy density (scalar);

Hν = 4πFν , where Fν is the net flux along n (component of the flux vector);

4πKν

c
= pν , the momentum flux along n (component of the rank-2 pressure tensor).

Stellar Atmospheres: Lecture 05, 2020.04.29

Prof. Sundar Srinivasan - IRyA/UNAM 2



Review

Photosphere special because in radiative equilibrium (radiative heating rate = radiative cooling
rate, flux conserved).

Aim: solve the radiative transfer equation for a plane-parallel atmosphere to get Iν(z)→
approximate insights on real stellar atmospheres.

Procedure so far: Assumed time independence, plane-parallel atmosphere (spatial dependence
only on z), directional dependence in terms of µ = n̂ · ŝ. Intensity a function of only ν, z, µ.
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Moments for some standard Iν(µ)

1 Isotropic: Iν(µ) = I0 for all µ.

We expect based on the definition that Jν = I0 and that Hν = 0. Kν is found to be
1

3
I0 =

1

3
Jν (Eddington fraction

Kν

Jν
=

1

3
).

2 Unidirectional (valid for a point source):

Iν(µ) = aI0δ(µ− 1), where a = normalisation constant = 2.

δ(µ− 1) picks out the value of any function at µ = 1, so Jν = Hν = Kν = I0. Eddington
approximation not valid.

3 Unequal but isotropic hemispheres (“two-stream”, representative of stellar atmosphere):

Iν(µ) =

{
I+, if µ > 0
I−, otherwise

For the stellar atmosphere, there is a nonzero net flux along µ > 0, so I+ > I−.

For this case, Jν =
1

2
(I+ + I−);Hν =

1

2
(I+ − I−);Kν =

1

6
(I+ + I−) =

1

3
Jν .

Note: If
I−

I+
� 1, then H ≈

J

2
.

Stellar Atmospheres: Lecture 05, 2020.04.29

Prof. Sundar Srinivasan - IRyA/UNAM 4



Moments for some standard Iν(µ)

1 Isotropic: Iν(µ) = I0 for all µ.

We expect based on the definition that Jν = I0 and that Hν = 0. Kν is found to be
1

3
I0 =

1

3
Jν (Eddington fraction

Kν

Jν
=

1

3
).

2 Unidirectional (valid for a point source):

Iν(µ) = aI0δ(µ− 1), where a = normalisation constant = 2.

δ(µ− 1) picks out the value of any function at µ = 1, so Jν = Hν = Kν = I0. Eddington
approximation not valid.

3 Unequal but isotropic hemispheres (“two-stream”, representative of stellar atmosphere):

Iν(µ) =

{
I+, if µ > 0
I−, otherwise

For the stellar atmosphere, there is a nonzero net flux along µ > 0, so I+ > I−.

For this case, Jν =
1

2
(I+ + I−);Hν =

1

2
(I+ − I−);Kν =

1

6
(I+ + I−) =

1

3
Jν .

Note: If
I−

I+
� 1, then H ≈

J

2
.

Stellar Atmospheres: Lecture 05, 2020.04.29

Prof. Sundar Srinivasan - IRyA/UNAM 4



Moments for some standard Iν(µ)

1 Isotropic: Iν(µ) = I0 for all µ.

We expect based on the definition that Jν = I0 and that Hν = 0. Kν is found to be
1

3
I0 =

1

3
Jν (Eddington fraction

Kν

Jν
=

1

3
).

2 Unidirectional (valid for a point source):

Iν(µ) = aI0δ(µ− 1), where a = normalisation constant = 2.

δ(µ− 1) picks out the value of any function at µ = 1, so Jν = Hν = Kν = I0. Eddington
approximation not valid.

3 Unequal but isotropic hemispheres (“two-stream”, representative of stellar atmosphere):

Iν(µ) =

{
I+, if µ > 0
I−, otherwise

For the stellar atmosphere, there is a nonzero net flux along µ > 0, so I+ > I−.

For this case, Jν =
1

2
(I+ + I−);Hν =

1

2
(I+ − I−);Kν =

1

6
(I+ + I−) =

1

3
Jν .

Note: If
I−

I+
� 1, then H ≈

J

2
.

Stellar Atmospheres: Lecture 05, 2020.04.29

Prof. Sundar Srinivasan - IRyA/UNAM 4



Moments for some standard Iν(µ)

1 Isotropic: Iν(µ) = I0 for all µ.

We expect based on the definition that Jν = I0 and that Hν = 0. Kν is found to be
1

3
I0 =

1

3
Jν (Eddington fraction

Kν

Jν
=

1

3
).

2 Unidirectional (valid for a point source):

Iν(µ) = aI0δ(µ− 1), where a = normalisation constant = 2.

δ(µ− 1) picks out the value of any function at µ = 1, so Jν = Hν = Kν = I0. Eddington
approximation not valid.

3 Unequal but isotropic hemispheres (“two-stream”, representative of stellar atmosphere):

Iν(µ) =

{
I+, if µ > 0
I−, otherwise

For the stellar atmosphere, there is a nonzero net flux along µ > 0, so I+ > I−.

For this case, Jν =
1

2
(I+ + I−);Hν =

1

2
(I+ − I−);Kν =

1

6
(I+ + I−) =

1

3
Jν .

Note: If
I−

I+
� 1, then H ≈

J

2
.

Stellar Atmospheres: Lecture 05, 2020.04.29

Prof. Sundar Srinivasan - IRyA/UNAM 4



Moments for some standard Iν(µ)

1 Isotropic: Iν(µ) = I0 for all µ.

We expect based on the definition that Jν = I0 and that Hν = 0. Kν is found to be
1

3
I0 =

1

3
Jν (Eddington fraction

Kν

Jν
=

1

3
).

2 Unidirectional (valid for a point source):

Iν(µ) = aI0δ(µ− 1), where a = normalisation constant = 2.

δ(µ− 1) picks out the value of any function at µ = 1, so Jν = Hν = Kν = I0. Eddington
approximation not valid.

3 Unequal but isotropic hemispheres (“two-stream”, representative of stellar atmosphere):

Iν(µ) =

{
I+, if µ > 0
I−, otherwise

For the stellar atmosphere, there is a nonzero net flux along µ > 0, so I+ > I−.

For this case, Jν =
1

2
(I+ + I−);Hν =

1

2
(I+ − I−);Kν =

1

6
(I+ + I−) =

1

3
Jν .

Note: If
I−

I+
� 1, then H ≈

J

2
.

Stellar Atmospheres: Lecture 05, 2020.04.29

Prof. Sundar Srinivasan - IRyA/UNAM 4



Moments for some standard Iν(µ)

1 Isotropic: Iν(µ) = I0 for all µ.

We expect based on the definition that Jν = I0 and that Hν = 0. Kν is found to be
1

3
I0 =

1

3
Jν (Eddington fraction

Kν

Jν
=

1

3
).

2 Unidirectional (valid for a point source):

Iν(µ) = aI0δ(µ− 1), where a = normalisation constant = 2.

δ(µ− 1) picks out the value of any function at µ = 1, so Jν = Hν = Kν = I0. Eddington
approximation not valid.

3 Unequal but isotropic hemispheres (“two-stream”, representative of stellar atmosphere):

Iν(µ) =

{
I+, if µ > 0
I−, otherwise

For the stellar atmosphere, there is a nonzero net flux along µ > 0, so I+ > I−.

For this case, Jν =
1

2
(I+ + I−);Hν =

1

2
(I+ − I−);Kν =

1

6
(I+ + I−) =

1

3
Jν .

Note: If
I−

I+
� 1, then H ≈

J

2
.

Stellar Atmospheres: Lecture 05, 2020.04.29

Prof. Sundar Srinivasan - IRyA/UNAM 4



Elastic scattering

The scattering of light by atoms/molecules/ions/electrons can be elastic or inelastic. In elastic
scattering, the energy (frequency) of the photon remains the same as it was before it was
scattered. The direction may, in general, change.
Some examples of elastic scattering:

1 Thomson Scattering: electric field of incident photon accelerates a charged particle of
mass m. Scattering is elastic in the low-energy (non-relativistic) regime, hν � mc2. This

is equivalent to requiring λ� λCompton, where λCompton =
h

mc
is the Compton

wavelength of the particle.

2 Rayleigh Scattering: particle sizes are much smaller than the wavelength: λ� a. Used to
explain scattering of sunlight by the Earth’s atmosphere. Scattered intensity is

I (λ, µ) ∝
1 + µ2

λ4
, where µ = cos (scattering angle)

The wavelength dependence implies that blue light is scattered to a much higher extent
than red light, explaining the red colour of sunsets.

3 Mie Scattering: scattering by spherical particles with sizes comparable to the wavelength:
λ ≈ a. Standard approximation used to account for the effects of scattering from
circumstellar and interstellar dust grains.

Stellar Atmospheres: Lecture 05, 2020.04.29

Prof. Sundar Srinivasan - IRyA/UNAM 5



Source function for absorption and scattering

Pure absorption:
The emission from any material is always ≤ Bν(T ), and is maximum at thermal equilibrium.
In the case of thermal emission, jν = αabs

ν Bν(T ) (Kirchhoff’s Law) ⇒ Sabs
ν = Bν(T ).

Pure scattering:
Simplifications: scattering is assumed to be
1) isotropic – independent of µ, only depends on mean intensity Jν .
2) coherent/elastic/monochromatic – # of photons conserved in every frequency range.

⇒ for every dν, power absorbed = power emitted ⇒ jν = αsca
ν Jν︸ ︷︷ ︸

monochromatic radiative equilibrium

⇒ Ssca
ν = Jν .

Absorption + scattering = attenuation or extinction: αabs
ν + αsca

ν = αext
ν .

RT equation for absorption + (isotropic + coherent) scattering: µ
dIν

dz
= −αext

ν (Iν − Sν).

Sν =
jν

αabs
ν + αsca

ν

= (1− aν)Bν(T ) + aνJν , where aν =
αsca
ν

αext
ν

= scatt. albedo.

Assumptions of thermal equilibrium and isotropic scattering ⇒ Sν is isotropic.
Complication: Sν depends on Jν which depends on Iν .
Simplification: LTE approximation, Grey approximation, and the Eddington Approximation.
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Grey atmospheres

Assumption: αν independent of frequency (“grey”) ⇒ τν independent of frequency.
Integrate over frequency → bolometric quantities.

I =

∞∫
0

dνIν , J =

∞∫
0

dνJν , H =

∞∫
0

dνHν , K =

∞∫
0

dνKν .

S =

∞∫
0

dνSν = (1− a)B + aJ, with a =
αsca

αext
the scattering albedo.

Let us write dτ ≡ −αextdz negative sign to show that τ ↑ as z ↓ from surface into the interior.

Two equations for grey, LTE, plane-parallel (GLPP) atmospheres:

µ
dI

dτ
= I − (1− a)B − aJ (radiative transfer)

dF

dτ
= 0 (energy cons./rad. equilibrium)

Now compute moments of the RT equation to relate to physical quantities (u, F , p).
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Moments of the RT equation for GLPP atmospheres

RT equation: µ
dI

dτ
= −I + (1− a)B + aJ

0th moment:

dH

dτ
= (1− a)(J − B).

The net flux is constant (energy conservation) ⇒ H must also be independent of depth.

⇒ J = B if a 6= 1.
the mean intensity in radiative equilibrium is given by the Planck Function.

⇒ S = (1− a)B + aJ = (1− a)B + aB = B = J
Same as if LTE was assumed.

1st moment:
dK

dτ
= H.

⇒ K = Hτ + K(τ = 0) (τ = 0 represents the surface).

Differentiating the 1st moment w.r.t. τ,
d2K

dτ2
=

dH

dτ
= 0 −→ Diffusion equation for K.

Moment closure: need another relation to terminate the series.
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The Eddington Approximation(s)

1 In rad. equilbrium, u = 3p. Since J ∝ u and K ∝ p, this motivates the approx. J = 3K .

⇒
d2J

dτ2
= 0 −→ diffusion equation for J.

This is thus called the diffusion approximation.

Equivalent to assuming that I (µ) is at best linear in µ : I (µ) = I0 + I1µ.

2 From two-stream example for surface of plane-parallel atmosphere,

J(τ = 0) ≈ 2H(τ = 0) (flux ∼ 50% of mean intensity)

Setting J(τ = 0) = 2H(τ = 0) is referred to as the surface approximation.

Apply to moment equations:

K(τ) = Hτ + K(τ = 0)⇒ J(τ) = 3Hτ + J(τ = 0) (1st approx.)

= 3Hτ + 2H (2nd approx., and H = constant)

⇒ J(τ) = 3H

(
τ +

2

3

)
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GLPP + Edd. Application #1: Temperature Stratification

In radiative equilibrium, S = B = J.

Use J(τ) = 3H

(
τ +

2

3

)
and the Stefan-Boltzmann Law, B(T ) =

σ

π
T 4:

σ

π
T 4 = 3H

(
τ +

2

3

)
Also, F = 4πH, and F = σT 4

eff (this equation defines Teff) =⇒

Temperature stratification
in GLPP + Edd. atmosphere:

T 4 =
3

4
T 4

eff

(
τ +

2

3

)

Optical photosphere: T (τ = 2/3) = Teff .

T (τ = 0) = 0.841Teff (actual min. ∼ 0.7Teff).

Credit: S. R. Cranmer, UC Boulder
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Formal solution of RT eq. for GLPP + Edd. atmosphere

Using an integrating factor as before, we get

I (τ, µ) = exp

[
τ

µ

] τ2∫
τ1

dt

µ
S(t) exp

[
−

t

µ

]
, where (τ1, τ2) =

(τ,∞), µ > 0(upward ray)

(0, τ), µ < 0(downward ray)

Apply the Eddington Diffusion Approximation: S(τ) = 3H

(
τ +

2

3

)
, which gives

Full solution for GLPP + Edd. atmosphere

Iν(τ, µ) =


3H

(
τ + µ+

2

3

)
µ > 0(upward ray)

3H

(
τ + µ+

2

3
−
(
µ+

2

3

)
exp

[
−
τ

µ

])
, µ < 0(downward ray)
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Emergent intensity from atmosphere

We can estimate the emergent intensity at the surface of a GLPP photosphere in the Eddington
Approximation:

I (τ = 0, µ) = 3H

(
µ+

2

3

)
= S(τ = µ)

That is, the emergent intensity of a semi-infinite GLPP atmosphere under the Eddington
Approximation is equal to the source function evaluated at τ = µ. This is the Eddington-Barbier
Relation for emergent intensity.

This approximate relation is accurate over a large range, because the exponential ‘localises’ the
source function to a range around τ = µ.
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Application of the E-B Relation: Limb Darkening

E-B Relation: S(τ) = S(τ = 0) + τ

(
dS

dτ

)
τ=0

, with S(τ = 0) = 2H,

(
dS

dτ

)
τ=0

= 3H

The ratio of the intensity at the limb to that of at the centre is then

I (τ = 0, µ = 0)

I (τ = 0, µ = 1)
=

S(τ = 0)

S(τ = 0) +

(
dS

dτ

)
τ=0

≈
B(T (τ = 0))

B(T (τ = 0)) +

(
dB(T )

dτ

)
τ=0

(LTE).

Credit: Brocken Inaglory, CC BY 2.5,

via Wikimedia Commons.

dB(T )

dτ
=

dB(T )

dT

dT

dτ
is always > 0:

The derivative of the Planck Function

w.r.t. temperature is an increasing function.

Also, T (τ) ↑ as τ ↑ (depth increases).

Therefore,
I (τ = 0, µ = 0)

I (τ = 0, µ = 1)
< 1 → limb darkening.

Prediction easily confirmed by observations (please do not
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Limb Darkening: Qualitative Explanation

Credit: User:Prboks13/Wikimedia,

Public Domain

Different sight lines to the star are provided by emergent
rays at differing µ values.

As projected distance from stellar centre increases, µ
decreases.

Photons observed at lower µ arise from shallower regions
(lower depth) than those at higher µ, and thus correspond
to a cooler temperature, and therefore a lower intensity.

It is also possible to have limb brightening in optically thin regions where the temperature
decreases with depth (e.g., the Solar corona). It could also arise at wavelengths corresponding
to optically thin line emission from certain species.
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Limb Darkening as a function of projected distance

CC BY-SA 3.0, via Wikimedia Commons.

The E-B Relation gives

I (τ = 0, µ) = 3H

(
µ+

2

3

)
,

from which we find

I (τ = 0, µ = 0) = 2H and I (τ = 0, µ = 1) = 5H.
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The Hopf Solution: GLPP without Eddington Approx.

The Eddington Diffusion Approximation is J(τ) ∝ τ +
2

3
.

More generally, we can write J(τ) ∝ τ + q(τ).

Credit: S. R. Cranmer, UC Boulder

Hopf’s analysis gives an exact value for q at the surface: q(τ = 0) =
1
√

3
(instead of

2

3
≈ 0.67).
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