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Continuum opacities

References:
® Hubeny & Mihalas Chapter 5;
Collins, The Fundamentals of Stellar Astrophysics, Chapter 13, 14,
Rybicki & Lightman Chapter 3;
Gray Chapter 8, 11.
Aller Chapter 5, 6.
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Dominant continuum absorption sources in stars of various types:

® O stars: electron scattering, He photoionisation.
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Sources of continuum opacity

Free-free transitions (Bremsstrahlung)
Bound-free transitions (photoionisation)

Hydride ion photodissociation
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Electron scattering

®

Molecular dissociation

Dominant continuum absorption sources in stars of various types:
® O stars: electron scattering, He photoionisation.
® A, B stars: H photoionisation, free-free.
® Sun-like stars: hydride ion.

® Cooler stars: photodissociation of molecules, line blanketing.

Hydrogen-related processes dominant source of absorption for B-K stars.
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Free-free emission

(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.
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(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.
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(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.

Power spectrum of free-free emission if all electrons have same speed:
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(Inverse Bremsstrahlung): An electron in the field of an ion absorbs a photon and radiates.
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Free-free absorption

(Inverse Bremsstrahlung): An electron in the field of an ion absorbs a photon and radiates.
In thermal equilibrium, use Kirchhoff's Law: j,, = v, B, (T) = for thermal Bremsstrahlung,
A 2 2 2 2 —1/2
J c e Ze 3kT v /KT -
ot g s (20) (20 e
B, (T) hv3 6mege 4megme 27 me

=37x1072 T Y272 nop; 3 (1 — e_'”’/kT) g (T, v) (units: m—1).
N~

S| units!

Dominates over bound-free absorption when hv < kT

— either (a) T 2 10* K (so that n; > nyeutra1) of (b) low v (typically radio)
In Rayleigh-Jeans regime, approximate relation:
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Bound-free contribution dominated by H and He
due to abundance. H-poor stars: metals.
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Electron in energy level m absorbs photon with hv > hvy = IPy, = 5042me<:2 (—) .
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v,m

From Menzel & Pekeris 1935 MNRAS 96, 77:
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Bound-Free Gaunt Factor (Menzel & Pekeris 1935)

Bound-free contribution dominated by H and He
due to abundance. H-poor stars: metals.

Hydrogen-like species: Hi1, Her, Cvi, Oviiy, - - -
tighter binding of e~ (energy levels oc Zz).

Example: E(H, m = 1) = E(He, m = 2).
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Photon emitted by free electron with KE E (speed v) when captured by ion.

Excitation and deexcitation rates are connected by the Einstein Relations.
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Photon emitted by free electron with KE E (speed v) when captured by ion.
Excitation and deexcitation rates are connected by the Einstein Relations.
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Photon emitted by free electron with KE E (speed v) when captured by ion.
Excitation and deexcitation rates are connected by the Einstein Relations.
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Recombination (free-bound transitions)

Photon emitted by free electron with KE E (speed v) when captured by ion.
Excitation and deexcitation rates are connected by the Einstein Relations.

Photoionisation and recombination rates — Milne Relations.

Use detailed balance to connect the recombination and photoionisation rates (per unit volume):

_ _ corr. for stim. recomb.
distr. of e~ speeds
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2 R 11
mec? /v . .
— cr,';b = a,’if [67 (7) geg,] Milne Relation (asf known).

hv \c/ 2g9
1 mec® 5 2
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For v 2 10vm,, a,’/b ~ mzo,‘jf. Diverges near vp, (electrons with almost zero energy are easily
captured).
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Hydride

Free-free emission dominates at high T. As TJ, He and then H become neutral and ne |.
Bound-free contribution from metals | despite their lower IPs because # energetic photons |.

So what is the source of the Sun’s opacity??

H™ ion.

Ground state: 1s? (singlet state). No bound excited state.
Binding energy of 2°d e~: 0.75 eV (\ = 1.64um, E/k = 8750 K).

Significant bound-free and free-free contributions to the overall opacity in relatively cool stars.

Next up: opacity of H™.
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