Stellar Atmospheres: Lecture 9, 2020.05.21

Prof. Sundar Srinivasan

IRyA/UNAM

©oe0

.

2

TRvA


https://creativecommons.org/licenses/by-nc-sa/4.0/

References

@& Collins, The Fundamentals of Stellar Astrophysics, Ch 13, 14.

® Hubeny & Mihalas, Ch. 8, 17
@ Bohm-Vitense, Ch 10.



http://ads.harvard.edu/books/1989fsa..book/
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Broadening of energy levels due to EM interactions with
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Broadening of energy levels due to EM interactions with
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Interaction energy (and splitting) oc b=" (b = impact
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Stark Effect: Line splitting due to external electric field.
Depending on interaction strength, can be linear (n = 2)
or quadratic (n = 4).
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Pressure broadening

Table 14.1 Types of Collis

‘ype of Enel

Type of Perturber Degenerate Nondegenerate

Ion or electron Linear Stark Quadratic Stark
effect n=2 effectn =4

Neutral atom Self-broadening van der Waal's
n=3 broadening n = 6

Collins, The Fundamentals of Stellar Astrophysics

Broadening of energy levels due to EM interactions with
neighbours.

Interaction energy (and splitting) o< b=" (b = impact
parameter). Lower n — stronger interaction.

Stark Effect: Line splitting due to external electric field.
Depending on interaction strength, can be linear (n = 2)
or quadratic (n = 4).
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Table 14.1 Types of Collis

‘ype of Enel

Type of Perturber Degenerate Nondegenerate

Ion or electron Linear Stark Quadratic Stark
effect n=2 effectn =4

Neutral atom Self-broadening van der Waal's
n=3 broadening n = 6

Collins, The Fundamentals of Stellar Astrophysics

Broadening of energy levels due to EM interactions with
neighbours.

Interaction energy (and splitting) o< b=" (b = impact
parameter). Lower n — stronger interaction.

Stark Effect: Line splitting due to external electric field.
Depending on interaction strength, can be linear (n = 2)
or quadratic (n = 4).

Compare teoq to tyaq ~ 1/(intrinsic energy level separation).
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Pressure broadening

Broadening of energy levels due to EM interactions with

Table 14.1 Types of Collisional Broadening neighbours

Type of Ener

Interaction energy (and splitting) o< b=" (b = impact
parameter). Lower n — stronger interaction.

Type of Perturber Degenerate Nondegenerate

fonor lcton Linear Stark Quadatc Stark
effectn=2 effectn =4 . P . .
e Sl broadening  van der Wasts Stark EfFect. L_|ne spllt_tmg due to external glectrlc field.
= broadening n Depending on interaction strength, can be linear (n = 2)

or quadratic (n = 4).

Collins, The Fundamentals of Stellar Astrophysics

Compare teoq to tyaq ~ 1/(intrinsic energy level separation).
teoll K traa — largest effect in core regions of line (shift) — impact theory.

Applies to non-degenerate levels (energy levels well separated).

Reasonable models for electron collisions.

Emission "interrupted” by near-instantaneous collision — phase shift/transition in line or to another atomic level.
Start/stop = frequency spread and shift of line centre.

Resulting profile still Lorentzian, but with modified I'!

Lifetime of state reduced: Aj — Ajj + Ye, where Ye = ne (o(z, )7, ) is the collision rate.

The electron velocities are typically Maxwellian.
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Broadening of energy levels due to EM interactions with

Table 14.1 Types of Collisional Broadening nei gh bours

Type of Ener

Interaction energy (and splitting) o< b=" (b = impact
parameter). Lower n — stronger interaction.

Type of Perturber Degenerate Nondegenerate

fonor lcton Linear Stark Quadatc Stark
effectn=2 effectn =4 . P . .
e Sl broadening  van der Wasts Stark EfFect. L.|ne spllt_tmg due to external glectrlc field.
= broadening n Depending on interaction strength, can be linear (n = 2)

or quadratic (n = 4).

Collins, The Fundamentals of Stellar Astrophysics

Compare teoq to tyaq ~ 1/(intrinsic energy level separation).
teoll K traa — largest effect in core regions of line (shift) — impact theory.

Applies to non-degenerate levels (energy levels well separated).

Reasonable models for electron collisions.

Emission "interrupted” by near-instantaneous collision — phase shift/transition in line or to another atomic level.
Start/stop = frequency spread and shift of line centre.

Resulting profile still Lorentzian, but with modified I'!

Lifetime of state reduced: Aj — Ajj + Ye, where Ye = ne (o(z, )7, ) is the collision rate.

The electron velocities are typically Maxwellian.

teoll > traq — largest effect on the wings (broadening) — quasi-static approximation.

Required to treat degenerate levels (energy separation very small).
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Line formation

Emergent flux at frequency v always from layer that is at 7,, = 2/3.
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by setting line opacities to zero.

@ Compute the residual flux and (if required) the
equivalent width.




Line formation

Emergent flux at frequency v always from layer that is at 7,, = 2/3.

Lower flux observed in absorption line because photons of that
frequency emitted from higher (and therefore cooler) layers.

T lower = B, (T) lower, hence flux lower.

Line centre and line wings receive photons from different layers
in the atmosphere. As T at line centre 1, photons come from
further up in the atmosphere.

Corollary: Absorption lines cannot originate from a layer where
T 1 with height.

General procedure to analyse line profiles (typically
numerical /computational):

@ Solve for I, from the RT equation.

@ Compute the emergent flux in the line and, from the
same equation, compute the emergent continuum flux
by setting line opacities to zero.

@ Compute the residual flux and (if required) the
equivalent width.

Instructive results can be obtained for some semi-analytical

models with simplifying assumptions.
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Assumptions (see discussion on validity, Hubeny & Mihalas p. 607):
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Case 1. No scattering in continuum, pure scattering in line: £, =0and¢, = ———
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If no temperature gradient, b, = 0 and R, (0) = 1 (line disappears).
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Recall: equivalent width

Define residual flux and absorption depth in the
continuum-divided spectrum.

A, K 1 - “optically thin” line. A, = 1 — “optically thick".

Measured values changes with resolution of observed spectrum.

Equivalent width is less sensitive to resolution.
EQWI[Hz] = / dv A, (or) EQWIA] = / dX Ay

F, [}
EQW:/dzx(l— z ):/du(l——”>
Fcont Icont

Line profile construction difficult at low resolution/for faint sources.

Compute EQW for estimates of relative abundances, T.g, and g.
How does EQW vary with abundance?

Curve of Growth — can be determined theoretically or empirically.
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Case 2. 7, > 1, a1, < 1. Contribution to the integral only from the core, where 7, < 1, where A, & 1 (saturation).
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To analyse the dependence of EQW on n, consider a simple but instructive model: Absorption by a thin cold slab.

Emergent intensity: /, = lpe™ "V, where 7, = Nyo12H(a, u). Nj is the column density of absorbing atoms, and
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Theoretical Curve of Growth (Milne-Eddington Model)

Curve of growth depends on damping factor a.

Note that saturation sets in around W =~ Avp,
and that wings start contributing when

As a 1, wings dominate faster.

from Hubeny & Mihalas Ch 17
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Empirical Curve of Growth
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& e, B & [ El} ‘ Vrrec® [m g
T, = Nioia; ere, — = exp|——|andojp = ——/ —
v 1012 N o) Pl= 0T 12 w0 KT 12
f u(T (5 2kT 1
== L2 =Ty ) exp [—1] —_— unknowns: T and N.
I N kT m \/Trec?

EQW 2kT
EQW x Av —> X 4 —
v m

EQW 8112
Vs, ———

L] Yo

Plot

and compare to theoretical curve.

Y axis:

(theoretical) vs.

(empirical).
Vp L]

Comparing the two gives us constraints on the most probable velocity and hence Tex.




Empirical Curve of Growth

& e, B & [ El} ‘ Vrrec® [m g
T, = Nioia; ere, — = exp|——|andojp = ——/ —
v 1012 N o) Pl= 0T 12 w0 KT 12
f u(T (5 2kT 1
== L2 =Ty ) exp [—1] —_— unknowns: T and N.
I N kT m \/Trec?

EQW 2kT
EQW x Av —> X 4 —
v m

EQW 8112
Vs, ———

L] Yo

Plot

and compare to theoretical curve.

Y axis:

(theoretical) vs.

(empirical).
Vp L]

Comparing the two gives us constraints on the most probable velocity and hence Tex.

. ) 81f2 )
X axis: 7, (theoretical) vs. =——— (experimental).
Yo
Since Tex is known, comparing the two abscissae gives us N.




