THE STRUCTURE AND DYNAMICS OF NGC 246

A. Szentgyorgyi, J. Franco, L. López-Martín, J. C. Raymond, and E. Villaver

We have imaged the planetary nebula (PN) NGC 246 in the wavelengths [Ne V] 342.6 nm, O III at 344.4 nm, and a nearby line-free region at 338.6 nm, as well as Hα, [O III] 500.7 nm, and [S II] 673.0, 671.5 nm.

Imaging in the 344.4 nm line is necessary to deconvolve contamination of the [Ne V] images by O III 342.9 nm (Figure 1). The radial profiles of the [Ne V] brightness decrease with radius from the exciting star (Figure 2), indicating that the bulk of the emission from this ion is due to the hard UV stellar radiation field, with a small contribution from collisional ionization in a shock between the PN shell and the interstellar medium (ISM). In contrast, the radial profiles of the emission in Hα, [O III] 500.7 nm, and [S II] are flatter and peak at the location of the shell.

We have also carried out 2-D numerical simulations for this PN-ISM interaction. The simulations consider the stellar motion with respect to the ambient ISM, and include the time evolution of the wind parameters and UV radiation field from the progenitor star.