Threaded Functions and Problems

The following Intel MKL function domains are threaded:

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel compilers, including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors. For a detailed description of Intel compiler options, including the instruction sets and specific microprocessors they implicate, please refer to the "Intel® Compiler User and Reference Guides" under "Compiler Options". Many library routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors than for other microprocessors. While the compilers and libraries in Intel® compiler products offer optimizations for both Intel and Intel-compatible microprocessors, depending on the options you select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine which best meet your requirements. We hope to win your business by striving to offer the best performance of any compiler or library; please let us know if you find we do not.

Notice revision #20110307

Threaded LAPACK Routines

In the following list, ? stands for a precision prefix of each flavor of the respective routine and may have the value of s, d, c, or z.

The following LAPACK routines are threaded:

A number of other LAPACK routines, which are based on threaded LAPACK or BLAS routines, make effective use of parallelism:
?gesv, ?posv, ?gels, ?gesvd, ?syev, ?heev, cgegs/zgegs, cgegv/zgegv, cgges/zgges, cggesx/zggesx, cggev/zggev, cggevx/zggevx,
and so on.

Threaded BLAS Level1 and Level2 Routines

In the following list, ? stands for a precision prefix of each flavor of the respective routine and may have the value of s, d, c, or z.

The following routines are threaded for Intel® Core™2 Duo and Intel® Core™ i7 processors:

Threaded FFT Problems

The following characteristics of a specific problem determine whether your FFT computation may be threaded:

Most FFT problems are threaded. In particular, computation of multiple transforms in one call (number of transforms > 1) is threaded. Details of which transforms are threaded follow.

One-dimensional (1D) transforms

1D transforms are threaded in many cases.

1D complex-to-complex (c2c) transforms of size N using interleaved complex data layout are threaded under the following conditions depending on the architecture:

Architecture

Conditions

Intel® 64

N is a power of 2, log2(N) > 9, the transform is double-precision out-of-place, and input/output strides equal 1.

IA-32

N is a power of 2, log2(N) > 13, and the transform is single-precision.

N is a power of 2, log2(N) > 14, and the transform is double-precision.

Any

N is composite, log2(N) > 16, and input/output strides equal 1.

1D real-to-complex and complex-to-real transforms are not threaded.

1D complex-to-complex transforms using split-complex layout are not threaded.

Prime-size complex-to-complex 1D transforms are not threaded.

Multidimensional transforms

All multidimensional transforms on large-volume data are threaded.


Submit feedback on this help topic